Skip to main content
Log in

Experimental studies and the model of anisotropic plasticity for additively manufactured stainless steel with stress state dependent properties

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this study the mechanical anisotropy of laser powder bed fusion (LPBF) 316L stainless steel under tensile, compressive, and shear loading in different orientations with respect to the build direction is investigated. Experimental analysis revealed a moderate degree of anisotropy, which is mainly attributed to the build direction. In addition, the mechanical properties were seen to be dependent on the stress state, as evidenced by the tension-compression asymmetry. The anisotropy and asymmetry can be explained by various microstructural factors with texture orientation being one of the most significant. To incorporate such material behavior in structural analysis, a phenomenological model for anisotropic plasticity and tension-compression asymmetry was proposed and calibrated for additive 316L steel. The flexibility of the model allows it to be applied using a mechanical test set on uniaxial loading, and further enhancements may rely on data for combined stress state. The model was calibrated based on FEA of samples loading and fit well all experimental curves, though factors such as residual stresses and test imperfections could introduce some discrepancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Salman, O.O., Gammer, C., Chaubey, A.K., Eckert, J., Scudino, S.: Effect of heat treatment on microstructure and mechanical properties of 316L steel synthesized by selective laser melting. Mater. Sci. Eng. A 748, 205–212 (2019). https://doi.org/10.1016/j.msea.2019.01.110

    Article  CAS  Google Scholar 

  2. Zhang, X., McMurtrey, M.D., Wang, L., O’Brien, R.C., Shiau, C.H., Wang, Y., et al.: Evolution of microstructure, residual stress, and tensile properties of additively manufactured stainless steel under heat treatments. JOM 72, 4167–4177 (2020). https://doi.org/10.1007/s11837-020-04433-9

    Article  ADS  CAS  Google Scholar 

  3. Williams, R.J., Vecchiato, F., Kelleher, J., Wenman, M.R., Hooper, P.A., Davies, C.M.: Effects of heat treatment on residual stresses in the laser powder bed fusion of 316L stainless steel: finite element predictions and neutron diffraction measurements. J. Manuf. Process. 57, 641–653 (2020). https://doi.org/10.1016/j.jmapro.2020.07.023

    Article  Google Scholar 

  4. Wang, Y.M., Voisin, T., McKeown, J.T., Ye, J., Calta, N.P., Li, Z., et al.: Additively manufactured hierarchical stainless steels with high strength and ductility. Nat. Mater. 17, 63–70 (2018). https://doi.org/10.1038/NMAT5021

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Ronneberg, T., Davies, C.M., Hooper, P.A.: Revealing relationships between porosity, microstructure and mechanical properties of laser powder bed fusion 316L stainless steel through heat treatment. Mater. Des. 189, 108481 (2020). https://doi.org/10.1016/j.matdes.2020.108481

    Article  CAS  Google Scholar 

  6. Niendorf, T., Leuders, S., Riemer, A., Richard, H.A., Tröster, T., Schwarze, D.: Highly anisotropic steel processed by selective laser melting. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 44, 794–796 (2013). https://doi.org/10.1007/s11663-013-9875-z

    Article  ADS  CAS  Google Scholar 

  7. Tolosa, I., Garciandía, F., Zubiri, F., Zapirain, F., Esnaola, A.: Study of mechanical properties of AISI 316 stainless steel processed by selective laser melting, following different manufacturing strategies. Int. J. Adv. Manuf. Technol. 51, 639–647 (2010). https://doi.org/10.1007/s00170-010-2631-5

    Article  Google Scholar 

  8. Hitzler, L., Hirsch, J., Heine, B., Merkel, M., Hall, W., Öchsner, A.: On the anisotropic mechanical properties of selective laser-melted stainless steel. Materials (2017). https://doi.org/10.3390/ma10101136

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mooney, B., Kourousis, K.I., Raghavendra, R.: Plastic anisotropy of additively manufactured Maraging steel: influence of the build orientation and heat treatments. Addit. Manuf. 25, 19–31 (2019). https://doi.org/10.1016/j.addma.2018.10.032

    Article  CAS  Google Scholar 

  10. Charmi, A., Falkenberg, R., Ávila, L., Mohr, G., Sommer, K., Ulbricht, A., et al.: Mechanical anisotropy of additively manufactured stainless steel 316L: an experimental and numerical study. Mater. Sci. Eng. A 799, 140154 (2021). https://doi.org/10.1016/j.msea.2020.140154

    Article  CAS  Google Scholar 

  11. Mahmoudi, M., Elwany, A., Yadollahi, A., Thompson, S.M., Bian, L., Shamsaei, N.: Mechanical properties and microstructural characterization of selective laser melted 17-4 PH stainless steel. Rapid Prototyp. J. 23, 280–294 (2017). https://doi.org/10.1108/RPJ-12-2015-0192

    Article  Google Scholar 

  12. Im, Y.D., Kim, K.H., Jung, K.H., Lee, Y.K., Song, K.H.: Anisotropic mechanical behavior of additive manufactured AISI 316L steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 50, 2014–2021 (2019). https://doi.org/10.1007/s11661-019-05139-7

    Article  ADS  CAS  Google Scholar 

  13. Shifeng, W., Shuai, L., Qingsong, W., Yan, C., Sheng, Z., Yusheng, S.: Effect of molten pool boundaries on the mechanical properties of selective laser melting parts. J. Mater. Process. Technol. 214, 2660–2667 (2014). https://doi.org/10.1016/j.jmatprotec.2014.06.002

    Article  CAS  Google Scholar 

  14. Röttger, A., Boes, J., Theisen, W., Thiele, M., Esen, C., Edelmann, A., et al.: Microstructure and mechanical properties of 316L austenitic stainless steel processed by different SLM devices. Int. J. Adv. Manuf. Technol. 108, 769–783 (2020). https://doi.org/10.1007/s00170-020-05371-1

    Article  Google Scholar 

  15. Carassus, H., Guérin, J.D., Morvan, H., Haugou, G., Sadat, T., Guérard, S., et al.: An experimental investigation into influences of build orientation and specimen thickness on quasi-static and dynamic mechanical responses of Selective Laser Melting 316L Stainless Steel. Mater. Sci. Eng. A (2022). https://doi.org/10.1016/j.msea.2022.142683

    Article  Google Scholar 

  16. Yu, H., Yang, J., Yin, J., Wang, Z., Zeng, X.: Comparison on mechanical anisotropies of selective laser melted Ti–6Al–4V alloy and 304 stainless steel. Mater. Sci. Eng. A 695, 92–100 (2017). https://doi.org/10.1016/j.msea.2017.04.031

    Article  CAS  Google Scholar 

  17. Casati, R., Lemke, J., Vedani, M.: Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting. J. Mater. Sci. Technol. 32, 738–744 (2016). https://doi.org/10.1016/j.jmst.2016.06.016

    Article  CAS  Google Scholar 

  18. Garlea, E., Choo, H., Sluss, C.C., Koehler, M.R., Bridges, R.L., Xiao, X., et al.: Variation of elastic mechanical properties with texture, porosity, and defect characteristics in laser powder bed fusion 316L stainless steel. Mater. Sci. Eng. A 763, 138032 (2019). https://doi.org/10.1016/j.msea.2019.138032

    Article  CAS  Google Scholar 

  19. Cyr, E., Lloyd, A., Mohammadi, M.: Tension-compression asymmetry of additively manufactured Maraging steel. J. Manuf. Process. 35, 289–294 (2018). https://doi.org/10.1016/j.jmapro.2018.08.015

    Article  Google Scholar 

  20. Bai, Y., Wierzbicki, T.: A new model of metal plasticity and fracture with pressure and Lode dependence. Int. J. Plast. 24, 1071–1096 (2008). https://doi.org/10.1016/j.ijplas.2007.09.004

    Article  CAS  Google Scholar 

  21. Alexandrov, S., Jeng, Y.-R.: Singular rigid/plastic solutions in anisotropic plasticity under plane strain conditions. Contin. Mech. Thermodyn. 25, 685–689 (2013). https://doi.org/10.1007/s00161-013-0304-y

    Article  ADS  MathSciNet  Google Scholar 

  22. Altenbach, H., Stoychev, G.B., Tushtev, K.N.: On elastoplastic deformation of grey cast iron. Int. J. Plast. 17, 719–736 (2001). https://doi.org/10.1016/S0749-6419(00)00026-7

    Article  CAS  Google Scholar 

  23. Lee, E.-H., Rubin, M.B.: Modeling anisotropic inelastic effects in sheet metal forming using microstructural vectors—part I: theory. Int. J. Plast. 134, 102783 (2020). https://doi.org/10.1016/j.ijplas.2020.102783

    Article  CAS  Google Scholar 

  24. Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. A Math. Phys. Sci. 193, 281–297 (1948). https://doi.org/10.1098/RSPA.1948.0045

    Article  ADS  MathSciNet  CAS  Google Scholar 

  25. Cazacu, O., Plunkett, B., Barlat, F.: Orthotropic yield criterion for hexagonal closed packed metals. Int. J. Plast. 22, 1171–1194 (2006). https://doi.org/10.1016/j.ijplas.2005.06.001

    Article  CAS  Google Scholar 

  26. Chandola, N., Lebensohn, R.A., Cazacu, O., Revil-Baudard, B., Mishra, R.K., Barlat, F.: Combined effects of anisotropy and tension-compression asymmetry on the torsional response of AZ31 Mg. Int. J. Solids Struct. 58, 190–200 (2015). https://doi.org/10.1016/j.ijsolstr.2015.01.001

    Article  CAS  Google Scholar 

  27. Kabirian, F., Khan, A.S.: Anisotropic yield criteria in \(\sigma -\tau \) stress space for materials with yield asymmetry. Int. J. Solids Struct. 67–68, 116–126 (2015). https://doi.org/10.1016/j.ijsolstr.2015.04.006

    Article  CAS  Google Scholar 

  28. Mohd Nor, M.K., Ma’at, N., Ho, C.S.: An anisotropic elastoplastic constitutive formulation generalised for orthotropic materials. Contin. Mech. Thermodyn. 30, 825–860 (2018). https://doi.org/10.1007/s00161-018-0645-7

    Article  ADS  MathSciNet  Google Scholar 

  29. Hou, Y., Min, J., El-Aty, A.A., Han, H.N., Lee, M.-G.: A new anisotropic-asymmetric yield criterion covering wider stress states in sheet metal forming. Int. J. Plast. 166, 103653 (2023). https://doi.org/10.1016/j.ijplas.2023.103653

    Article  CAS  Google Scholar 

  30. Ghorbanpour, S., Alam, M.E., Ferreri, N.C., Kumar, A., McWilliams, B.A., Vogel, S.C., et al.: Experimental characterization and crystal plasticity modeling of anisotropy, tension-compression asymmetry, and texture evolution of additively manufactured Inconel 718 at room and elevated temperatures. Int. J. Plast. 125, 63–79 (2020). https://doi.org/10.1016/j.ijplas.2019.09.002

    Article  CAS  Google Scholar 

  31. Chen, W., Voisin, T., Zhang, Y., Florien, J.B., Spadaccini, C.M., McDowell, D.L., et al.: Microscale residual stresses in additively manufactured stainless steel. Nat. Commun. 10, 1–12 (2019). https://doi.org/10.1038/s41467-019-12265-8

    Article  CAS  Google Scholar 

  32. Wang, Z., Jiang, B., Wu, S., Liu, W.: Anisotropic tension-compression asymmetry in SLM 316L stainless steel. Int. J. Mech. Sci. 246, 108139 (2023). https://doi.org/10.1016/j.ijmecsci.2023.108139

    Article  Google Scholar 

  33. Hernandez Padilla, C.A., Markert, B.: A coupled ductile fracture phase-field model for crystal plasticity. Contin. Mech. Thermodyn. 29, 1017–1026 (2017). https://doi.org/10.1007/s00161-015-0471-0

    Article  ADS  MathSciNet  CAS  Google Scholar 

  34. Mistry, N., Hitzler, L., Biswas, A., Krempaszky, C., Werner, E.: Predicting anisotropic behavior of textured PBF-LB materials via microstructural modeling. Contin. Mech. Thermodyn. 35, 1185–1202 (2023). https://doi.org/10.1007/s00161-023-01215-x

    Article  ADS  Google Scholar 

  35. Güden, M., Yavaş, H., Tanrıkulu, A.A., Taşdemirci, A., Akın, B., Enser, S., et al.: Orientation dependent tensile properties of a selective-laser-melt 316L stainless steel. Mater. Sci. Eng. A (2021). https://doi.org/10.1016/j.msea.2021.141808

    Article  Google Scholar 

  36. Yadollahi, A., Shamsaei, N., Thompson, S.M., Seely, D.W.: Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Mater. Sci. Eng. A 644, 171–183 (2015). https://doi.org/10.1016/j.msea.2015.07.056

    Article  CAS  Google Scholar 

  37. Fedorenko, A., Fedulov, B., Kuzminova, Y., Evlashin, S., Staroverov, O., Tretyakov, M., et al.: Anisotropy of mechanical properties and residual stress in additively manufactured 316l specimens. Materials 14, 1–17 (2021). https://doi.org/10.3390/ma14237176

    Article  CAS  Google Scholar 

  38. Filimonov, A.M., Rogozin, O.A., Firsov, D.G., Kuzminova, Y.O., Sergeev, S.N., Zhilyaev, A.P., et al.: Hardening of additive manufactured 316l stainless steel by using bimodal powder containing nanoscale fraction. Materials 14, 1–14 (2020). https://doi.org/10.3390/ma14010115

    Article  CAS  Google Scholar 

  39. Dubinin, O.N., Chernodubov, D.A., Kuzminova, Y.O., Shaysultanov, D.G., Akhatov, I.S., Stepanov, N.D., et al.: Gradient soft magnetic materials produced by additive manufacturing from non-magnetic powders. J. Mater. Process. Technol. 300, 117393 (2022). https://doi.org/10.1016/j.jmatprotec.2021.117393

    Article  CAS  Google Scholar 

  40. Marattukalam, J.J., Karlsson, D., Pacheco, V., Beran, P., Wiklund, U., Jansson, U., et al.: The effect of laser scanning strategies on texture, mechanical properties, and site-specific grain orientation in selective laser melted 316L SS. Mater. Des. 193, 108852 (2020). https://doi.org/10.1016/j.matdes.2020.108852

    Article  CAS  Google Scholar 

  41. Chen, X.H., Lu, J., Lu, L., Lu, K.: Tensile properties of a nanocrystalline 316L austenitic stainless steel. Scr. Mater. 52, 1039–1044 (2005). https://doi.org/10.1016/j.scriptamat.2005.01.023

    Article  CAS  Google Scholar 

  42. Li, Z., Voisin, T., McKeown, J.T., Ye, J., Braun, T., Kamath, C., et al.: Tensile properties, strain rate sensitivity, and activation volume of additively manufactured 316L stainless steels. Int. J. Plast. 120, 395–410 (2019). https://doi.org/10.1016/j.ijplas.2019.05.009

    Article  CAS  Google Scholar 

  43. Zhou, P., Liang, Z.Y., Liu, R.D., Huang, M.X.: Evolution of dislocations and twins in a strong and ductile nanotwinned steel. Acta Mater. 111, 96–107 (2016). https://doi.org/10.1016/j.actamat.2016.03.057

    Article  ADS  CAS  Google Scholar 

  44. Bronkhorst, C.A., Mayeur, J.R., Livescu, V., Pokharel, R., Brown, D.W., Gray, G.T.: Structural representation of additively manufactured 316L austenitic stainless steel. Int. J. Plast. 118, 70–86 (2019). https://doi.org/10.1016/j.ijplas.2019.01.012

    Article  CAS  Google Scholar 

  45. Klimova, M.V., Shaysultanov, D.G., Zherebtsov, S.V., Stepanov, N.D.: Effect of second phase particles on mechanical properties and grain growth in a CoCrFeMnNi high entropy alloy. Mater. Sci. Eng. A 748, 228–235 (2019). https://doi.org/10.1016/j.msea.2019.01.112

    Article  CAS  Google Scholar 

  46. Sabzi, H.E., Hernandez-Nava, E., Li, X.-H., Fu, H., San-Martín, D., Rivera-Díaz-del-Castillo, P.E.J.: Strengthening control in laser powder bed fusion of austenitic stainless steels via grain boundary engineering. Mater. Des. 212, 110246 (2021). https://doi.org/10.1016/j.matdes.2021.110246

    Article  CAS  Google Scholar 

  47. Lomakin, E.V., Fedulov, B.N., Melnikov, A.M.: Constitutive models for anisotropic materials susceptible to loading conditions. In: Belyaev, A., Irschik, H., Krommer, M. (eds.) Mechanics and Model-Based Control of Advanced Engineering Systems. Springer, Berlin (2014). https://doi.org/10.1007/978-3-7091-1571-8_23

    Chapter  Google Scholar 

  48. Tu, S., Ren, X., He, J., Zhang, Z.: Stress-strain curves of metallic materials and post-necking strain hardening characterization: a review. Fatigue Fract. Eng. Mater. Struct. 43, 3–19 (2020). https://doi.org/10.1111/ffe.13134

    Article  Google Scholar 

  49. Samantaray, D., Mandal, S., Bhaduri, A.K.: A critical comparison of various data processing methods in simple uni-axial compression testing. Mater. Des. 32, 2797–2802 (2011). https://doi.org/10.1016/j.matdes.2011.01.007

    Article  CAS  Google Scholar 

  50. Abaqus User’s Manual, https://help.3ds.com/2021/

  51. Brünig, M., Gerke, S., Schmidt, M.: Damage and failure at negative stress triaxialities: experiments, modeling and numerical simulations. Int. J. Plast. 102, 70–82 (2018). https://doi.org/10.1016/j.ijplas.2017.12.003

    Article  Google Scholar 

  52. Lomakin, E., Fedulov, B.: Plastic deformation and failure of solids with stress state dependent properties. Procedia Struct. Integr. 18, 549–555 (2019). https://doi.org/10.1016/j.prostr.2019.08.199

    Article  Google Scholar 

  53. Garcia, I., Guerra, S., de Damborenea, J., Conde, A.: Reduction of the coefficient of friction of steel-steel tribological contacts by novel graphene-deep eutectic solvents (DESs) lubricants. Lubricants (2019). https://doi.org/10.3390/lubricants7040037

    Article  Google Scholar 

  54. Bao, Y.: Prediction of ductile crack formation in Uncracked bodies. PhD Thesis. Massachusetts Institute of Technology, (2003)

  55. Yadroitsev, I., Yadroitsava, I.: Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting. Virtual Phys. Prototyp. 10, 67–76 (2015). https://doi.org/10.1080/17452759.2015.1026045

    Article  Google Scholar 

  56. Sprengel, M., Mohr, G., Altenburg, S.J., Evans, A., Serrano-Munoz, I., Kromm, A., et al.: Triaxial residual stress in laser powder bed fused 316L: effects of interlayer time and scanning velocity. Adv. Eng. Mater. (2022). https://doi.org/10.1002/adem.202101330

    Article  Google Scholar 

  57. Rangaswamy, P., Griffith, M.L., Prime, M.B., Holden, T.M., Rogge, R.B., Edwards, J.M., et al.: Residual stresses in LENS®components using neutron diffraction and contour method. Mater. Sci. Eng. A 399, 72–83 (2005). https://doi.org/10.1016/j.msea.2005.02.019

    Article  CAS  Google Scholar 

  58. Statnik, E.S., Uzun, F., Lipovskikh, S.A., Kan, Y.V., Eleonsky, S.I., Pisarev, V.S., et al.: Comparative multi-modal, multi-scale residual stress evaluation in SLM 3D-printed Al–Si–Mg alloy (RS-300) parts. Metals (Basel) (2021). https://doi.org/10.3390/met11122064

    Article  Google Scholar 

  59. Liu, X., Han, J.K., Onuki, Y., Kuzminova, Y.O., Evlashin, S.A., Kawasaki, M., et al.: In situ neutron diffraction investigating microstructure and texture evolution upon heating of nanostructured CoCrFeNi high-entropy alloy. Adv. Eng. Mater. (2023). https://doi.org/10.1002/adem.202201256

    Article  Google Scholar 

  60. Williams, R.J., Davies, C.M., Hooper, P.A.: A pragmatic part scale model for residual stress and distortion prediction in powder bed fusion. Addit. Manuf. 22, 416–425 (2018). https://doi.org/10.1016/j.addma.2018.05.038

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the Russian Science Foundation (Grant No. 20-11-20230-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Fedorenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorenko, A., Fedulov, B., Evlashin, S. et al. Experimental studies and the model of anisotropic plasticity for additively manufactured stainless steel with stress state dependent properties. Continuum Mech. Thermodyn. (2024). https://doi.org/10.1007/s00161-024-01286-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00161-024-01286-4

Keywords

Navigation