Skip to main content
Log in

Novel pH responsive hesperidin nanoformulation exerts anticancer activity on lung adenocarcinoma cells by targeting Akt/mTOR and MEK/ERK pathways

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Zinc oxide nanoparticle based drug delivery enhances bioavailability of anticancer drug to the tumor site. We developed novel biocompatible ZnO nanoparticles for the targeted delivery of hesperidin. UV, FT-IR, DLS analysis, SEM and XRD analyses were done to confirm hesperidin loading onto zinc oxide nanoparticles. We also performed crystal violet staining, ROS and live-dead staining assay to check toxicity of hesperidin nanoformulation on A549 lung adenocarcinoma cells. Effect of nanoformulation on protein and gene expression was evaluated. Particle size of formulated ZnO NPs was 3 nm, which increased to 104 nm after hesperidin loading. Hesperidin nanoformulation showed enhanced anticancer, antiproliferative and antimigratory effects on A549 cells with an IC50 concentration of 40 µg/mL. The nanoformulation reduced expression of Akt/mTOR and MEK/ERK signalling proteins and increased the expression of apoptotic markers. Hesperidin nanoformulation also upregulated the expression of apoptotic genes such as Bax, p53 and decreased the expression of anti-apoptotic gene Bcl2.

Graphical abstract

Hesperidin nanoformulation and its biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The data are made available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021). https://doi.org/10.3322/caac.21660

    Article  CAS  PubMed  Google Scholar 

  2. H. Padinharayil, J. Varghese, M.C. John, G.K. Rajanikant, C.M. Wilson, M. Al-Yozbaki, K. Renu, S. Dewanjee, R. Sanyal, A. Dey, A.G. Mukherjee, Non-small cell lung carcinoma (NSCLC): implications on molecular pathology and advances in early diagnostics and therapeutics. Genes Dis. 10, 960–989 (2023). https://doi.org/10.1016/j.gendis.2022.07.023

    Article  CAS  PubMed  Google Scholar 

  3. B. Melosky, K. Kambartel, M. Haentschel, M. Bennetts, D.J. Nickens, J. Brinkmann, A. Kayser, M. Moran, F. Cappuzzo, Worldwide prevalence of epidermal growth factor receptor mutations in non-small cell lung cancer: a meta-analysis. Mol. Diagn. Ther. 26, 7–18 (2022). https://doi.org/10.1007/s40291-021-00563-1

    Article  CAS  PubMed  Google Scholar 

  4. A. Leiter, R.R. Veluswamy, J.P. Wisnivesky, The global burden of lung cancer: current status and future trends. Nat. Rev. Clin. Oncol. 20, 624–639 (2023). https://doi.org/10.1038/s41571-023-00798-3

    Article  PubMed  Google Scholar 

  5. J.A. Barta, C.A. Powell, J.P. Wisnivesky, Global epidemiology of lung cancer. Ann. Glob. Health (2019). https://doi.org/10.5334/aogh.2419

    Article  PubMed  PubMed Central  Google Scholar 

  6. B.I. Hiddinga, J. Raskin, A. Janssens, P. Pauwels, J.P. Van Meerbeeck, Recent developments in the treatment of small cell lung cancer. Eur. Respir. Rev. (2021). https://doi.org/10.1183/16000617.0079-2021

    Article  PubMed  PubMed Central  Google Scholar 

  7. S.R. Pavan, A. Prabhu, Advanced cisplatin nanoformulations as targeted drug delivery platforms for lung carcinoma treatment: a review. J. Mater. Sci. 57, 16192–16227 (2022). https://doi.org/10.1007/s10853-022-07649-z

    Article  CAS  Google Scholar 

  8. Q. Li, Z. Li, T. Luo, H. Shi, Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy. Mol. Med. 3, 47 (2022). https://doi.org/10.1186/s43556-022-00110-2

    Article  CAS  Google Scholar 

  9. F. Majolo, L.K.D.O.B. Delwing, D.J. Marmitt, I.C. Bustamante-Filho, M.I. Goettert, Medicinal plants and bioactive natural compounds for cancer treatment: important advances for drug discovery. Phytochem. Lett. 31, 196–207 (2019). https://doi.org/10.1016/j.phytol.2019.04.003

    Article  CAS  Google Scholar 

  10. M. Hajialyani, M. Hosein Farzaei, J. Echeverría, S.M. Nabavi, E. Uriarte, E. Sobarzo-Sánchez, Hesperidin as a neuroprotective agent: a review of animal and clinical evidence. Molecules 24, 648 (2019). https://doi.org/10.3390/molecules24030648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. V. Aggarwal, H.S. Tuli, F. Thakral, P. Singhal, D. Aggarwal, S. Srivastava, A. Pandey, K. Sak, M. Varol, M.A. Khan, G. Sethi, Molecular mechanisms of action of hesperidin in cancer: recent trends and advancements. Exp. Biol. Med. 245, 486–497 (2020). https://doi.org/10.1177/1535370220903671

    Article  CAS  Google Scholar 

  12. G. Mikus, K.I. Foerster, Role of CYP3A4 in kinase inhibitor metabolism and assessment of CYP3A4 activity. Transl. Cancer. Res. 6, 1592–1599 (2017). https://doi.org/10.21037/tcr.2017.09.10

    Article  CAS  Google Scholar 

  13. F.G. Baveloni, B.V. Riccio, L.D. Di Filippo, M.A. Fernandes, A.B. Meneguin, M. Chorilli, Nanotechnology-based drug delivery systems as potential for skin application: a review. Curr. Med. Chem. 28, 3216–3248 (2021). https://doi.org/10.2174/0929867327666200831125656

    Article  CAS  PubMed  Google Scholar 

  14. S. Anjum, M. Hashim, S.A. Malik, M. Khan, J.M. Lorenzo, B.H. Abbasi, C. Hano, Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers 13, 4570 (2021). https://doi.org/10.3390/cancers13184570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. P. Sadhukhan, M. Kundu, S. Chatterjee, N. Ghosh, P. Manna, J. Das, P.C. Sil, Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy. Mater. Sci. Eng. C 100, 129–40 (2019). https://doi.org/10.1016/j.msec.2019.02.096

    Article  CAS  Google Scholar 

  16. M. Kundu, P. Sadhukhan, N. Ghosh, S. Chatterjee, P. Manna, J. Das, P.C. Sil, pH-responsive and targeted delivery of curcumin via phenylboronic acid-functionalized ZnO nanoparticles for breast cancer therapy. J. Adv. Res. 18, 161–172 (2019). https://doi.org/10.1016/j.jare.2019.02.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Z.M. He, P.H. Zhang, X. Li, J.R. Zhang, J.J. Zhu, A targeted DNAzyme-nanocomposite probe equipped with built-in Zn2+ arsenal for combined treatment of gene regulation and drug delivery. Sci. Rep. 6, 22737 (2016). https://doi.org/10.1038/srep22737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J.S. Kim, C.H. Yun, Inhibition of human cytochrome P450 3A4 activity by zinc (II) ion. Toxicol. Lett. 156, 341–350 (2005). https://doi.org/10.1016/j.toxlet.2004.12.006

    Article  CAS  PubMed  Google Scholar 

  19. D.J. Peng, J.Y. Zhou, G.S. Wu, Role of the Akt/mTOR survival pathway in cisplatin resistance in ovarian cancer cells. Biochem. Biophys. Res. Commun. 394, 600 (2010). https://doi.org/10.1016/j.bbrc.2010.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A.K. Garg, B. Maddiboyina, M.H. Alqarni, A. Alam, H.M. Aldawsari, P. Rawat, S. Singh, P. Kesharwani, Solubility enhancement, formulation development and antifungal activity of luliconazole niosomal gel-based system. J. Biomater. Sci. Polym. Ed. 32, 1009–1023 (2021). https://doi.org/10.1080/09205063.2021.1892471

    Article  CAS  PubMed  Google Scholar 

  21. J.W. Rasmussen, E. Martinez, P. Louka, D.G. Wingett, Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv. 7, 1063–1077 (2010). https://doi.org/10.1517/17425247.2010.502560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. M.E. Davis, Z. Chen, D.M. Shin, Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7, 771–782 (2008). https://doi.org/10.1038/nrd2614

    Article  CAS  PubMed  Google Scholar 

  23. M.A.E.J. Ambrose, The surface properties of cancer cells: a review. Cancer. Res. 22, 525–548 (1962)

    PubMed  Google Scholar 

  24. A. Degen, M. Kosec, Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. J. Eur. Ceram. Soc. 20, 667–673 (2000). https://doi.org/10.1016/S0955-2219(99)00203-4

    Article  CAS  Google Scholar 

  25. G. Sundraraman, L.S. Jayakumari, Meticulous taxifolin releasing performance by the zinc oxide nanoparticles: as a short road to drug delivery system for cancer therapeutics. J. Clust. Sci. 31, 241–255 (2020). https://doi.org/10.1007/s10876-019-01642-4

    Article  CAS  Google Scholar 

  26. P. Sadhukhan, M. Kundu, S. Chatterjee, N. Ghosh, P. Manna, J. Das, P.C. Sil, Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy. Mater. Sci. Eng. C 100, 129–140 (2019). https://doi.org/10.1016/j.msec.2019.02.096

    Article  CAS  Google Scholar 

  27. D. Rossi, A. Zlotnik, The biology of chemokines and their receptors. Annu. Rev. Immunol. 18, 217–242 (2000). https://doi.org/10.1146/annurev.immunol.18.1.217

    Article  CAS  PubMed  Google Scholar 

  28. J. Arai, M. Yasukawa, Y. Yakushijin, T. Miyazaki, S. Fujita, Stromal cells in lymph nodes attractB-lymphoma cells via production ofstromal cell-derived factor-1. Eur. J. Haematol. 64, 323–332 (2000). https://doi.org/10.1034/j.1600-0609.2000.90147.x

    Article  CAS  PubMed  Google Scholar 

  29. K.M. Hajra, D.Y. Chen, E.R. Fearon, The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res. 62, 1613–1618 (2002)

    CAS  PubMed  Google Scholar 

  30. R.M. Mège, N. Ishiyama, Integration of cadherin adhesion and cytoskeleton at adherens junctions. Cold. Spring. Harb. Perspect. Boil. 9, a028738 (2017). https://doi.org/10.1101/cshperspect.a028738

    Article  CAS  Google Scholar 

  31. S. Mahalanobish, M. Kundu, S. Ghosh, J. Das, P.C. Sil, Fabrication of phenyl boronic acid modified pH-responsive zinc oxide nanoparticles as targeted delivery of chrysin on human A549 cells. Toxicol. Rep. 9, 961–969 (2022). https://doi.org/10.1016/j.toxrep.2022.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. J. Wang, J.S. Lee, D. Kim, L. Zhu, Exploration of zinc oxide nanoparticles as a multitarget and multifunctional anticancer nanomedicine. ACS Appl. Mater. Interfaces 9, 39971–39984 (2017). https://doi.org/10.1021/acsami.7b11219

    Article  CAS  PubMed  Google Scholar 

  33. Y.S. Bae, H. Oh, S.G. Rhee, Y.D. Yoo, Regulation of reactive oxygen species generation in cell signaling. Mol. Cells 32, 491–509 (2011). https://doi.org/10.1007/s10059-011-0276-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. P. Das, M. Maruthapandi, A. Saravanan, M. Natan, G. Jacobi, E. Banin, A. Gedanken, Carbon dots for heavy-metal sensing, pH-sensitive cargo delivery, and antibacterial applications. ACS Appl. Nano Mater. 3, 11777–11790 (2020). https://doi.org/10.1021/acsanm.0c02305

    Article  CAS  Google Scholar 

  35. J. Alipal, S. Saidin, H.Z. Abdullah, M.I. Idris, T.C. Lee, Physicochemical and cytotoxicity studies of a novel hydrogel nanoclay EPD coating on titanium made of chitosan/gelatin/halloysite for biomedical applications. Mater. Chem. Phys. 290, 126543 (2022). https://doi.org/10.1016/j.matchemphys.2022.126543

    Article  CAS  Google Scholar 

  36. P. Pimton, P. Ratphibun, N. Tassaneesuwan, R. Chiangnoon, P. Uttayarat, Cytotoxicity evaluation of hydrogel sheet dressings fabricated by gamma irradiation: extract and semi-direct contact tests. Trends Sci. 19, 4583–4583 (2022). https://doi.org/10.48048/tis.2022.4583

    Article  Google Scholar 

  37. P. Das, S. Ganguly, A. Saha, M. Noked, S. Margel, A. Gedanken, Carbon-dots-initiated photopolymerization: an in situ synthetic approach for MXene/poly (norepinephrine)/copper hybrid and its application for mitigating water pollution. ACS Appl. Mater. Interfaces 13, 31038–31050 (2021). https://doi.org/10.1021/acsami.1c08111

    Article  CAS  PubMed  Google Scholar 

  38. S. Ganguly, P. Das, E. Itzhaki, E. Hadad, A. Gedanken, S. Margel, Microwave-synthesized polysaccharide-derived carbon dots as therapeutic cargoes and toughening agents for elastomeric gels. ACS Appl. Mater. Interfaces 12, 51940–51951 (2020). https://doi.org/10.1021/acsami.0c14527

    Article  CAS  PubMed  Google Scholar 

  39. C. Garrido, L. Galluzzi, M. Brunet, P.E. Puig, C. Didelot, G. Kroemer, Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 13, 1423–1433 (2006). https://doi.org/10.1038/sj.cdd.4401950

    Article  CAS  PubMed  Google Scholar 

  40. C.W. Lee, C.C.Y. Huang, M.C. Chi, K.H. Lee, K.T. Peng, M.L. Fang, Y.C. Chiang, J.F. Liu, Naringenin induces ROS-mediated ER stress, autophagy, and apoptosis in human osteosarcoma cell lines. Molecules 27, 373 (2022). https://doi.org/10.3390/molecules27020373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. C.M. Pfeffer, A.T. Singh, Apoptosis: a target for anticancer therapy. Int. J. Mol. Sci. 19, 448 (2018). https://doi.org/10.3390/ijms19020448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. S. Elmore, Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495–516 (2007). https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. E. Obeng, Apoptosis (programmed cell death) and its signals—a review. Braz. J. Biol. Res. 81, 1133–1143 (2020). https://doi.org/10.1590/1519-6984.228437

    Article  Google Scholar 

  44. R. Ito, M. Yashiro, T. Tsukioka, N. Izumi, H. Komatsu, H. Inoue, Y. Yamamoto, N. Nishiyama, Pyruvate dehydrogenase E1α represents a reliable prognostic predictor for patients with non-small cell lung cancer resected via curative operation. J. Thorac. Dis. 13, 5691 (2021). https://doi.org/10.21037/jtd-21-1463

    Article  PubMed  PubMed Central  Google Scholar 

  45. T. McFate, A. Mohyeldin, H. Lu, J. Thakar, J. Henriques, N.D. Halim, H. Wu, M.J. Schell, T.M. Tsang, O. Teahan, S. Zhou, Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J. Biol. Chem. 283, 22700–22708 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. X. Wu, J. Guo, Y. Chen, X. Liu, G. Yang, Y. Wu, Y. Tian, N. Liu, L. Yang, S. Wei, H. Deng, The 60-kDa heat shock protein regulates energy rearrangement and protein synthesis to promote proliferation of multiple myeloma cells. Br. J. Haematol. 190, 741–752 (2020). https://doi.org/10.1111/bjh.16569

    Article  CAS  PubMed  Google Scholar 

  47. Z. Wu, B. Liu, J. Liu, Q. Zhang, J. Liu, N. Chen, R. Chen, R. Zhu, Resveratrol inhibits the proliferation of human melanoma cells by inducing G1/S cell cycle arrest and apoptosis. Mol. Med. Rep. 11, 400–404 (2015). https://doi.org/10.3892/mmr.2014.2716

    Article  CAS  PubMed  Google Scholar 

  48. J.T. Pai, M.W. Hsu, Y.L. Leu, K.T. Chang, M.S. Weng, Induction of G2/M cell cycle arrest via p38/p21Waf1/Cip1-dependent signaling pathway activation by bavachinin in non-small-cell lung cancer cells. Molecules 26, 5161 (2021). https://doi.org/10.3390/molecules26175161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. S. Deota, S. Rathnachalam, K. Namrata, M. Boob, A. Fulzele, S. Radhika, S. Ganguli, C. Balaji, S. Kaypee, K.K. Vishwakarma, T.K. Kundu, Allosteric regulation of cyclin-B binding by the charge state of catalytic lysine in CDK1 is essential for cell-cycle progression. J. Mol. Biol. 431, 2127–2142 (2019). https://doi.org/10.1016/j.jmb.2019.04.005

    Article  CAS  PubMed  Google Scholar 

  50. R. Xia, X. Sheng, X. Xu, C. Yu, H. Lu, Hesperidin induces apoptosis and G0/G1 arrest in human non-small cell lung cancer A549 cells. Int. J. Mol. Med. 41, 464–472 (2018). https://doi.org/10.3892/ijmm.2017.3250

    Article  CAS  PubMed  Google Scholar 

  51. Z. Wen, R. Jiang, Y. Huang, Z. Wen, D. Rui, X. Liao, Z. Ling, Inhibition of lung cancer cells and Ras/Raf/MEK/ERK signal transduction by ectonucleoside triphosphate phosphohydrolase-7 (ENTPD7). Respir. Res. 20, 1–12 (2019). https://doi.org/10.1186/s12931-019-1165-0

    Article  CAS  Google Scholar 

  52. L. Li, G.D. Zhao, Z. Shi, L.L. Qi, L.Y. Zhou, Z.X. Fu, The Ras/Raf/MEK/ERK signaling pathway and its role in the occurrence and development of HCC. Oncol. Lett. 12, 3045–3050 (2016). https://doi.org/10.3892/ol.2016.5110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Y. Guo, Q.Q. Shan, P.Y. Gong, S.C. Wang, The autophagy induced by curcumin via MEK/ERK pathway plays an early anti-leukemia role in human Philadelphia chromosome-positive acute lymphoblastic leukemia SUP-B15 cells. J. Cancer Ther. 14, 125–131 (2018). https://doi.org/10.4103/0973-1482.172111

    Article  CAS  Google Scholar 

  54. R. Bhanumathi, M. Manivannan, R. Thangaraj, S. Kannan, Drug-carrying capacity and anticancer effect of the folic acid-and berberine-loaded silver nanomaterial to regulate the AKT-ERK pathway in breast cancer. ACS Omega 3, 8317–8328 (2018). https://doi.org/10.1021/acsomega.7b01347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. J. Yang, P. Xiao, J. Sun, L. Guo, Anticancer effects of kaempferol in A375 human malignant melanoma cells are mediated via induction of apoptosis, cell cycle arrest, inhibition of cell migration and downregulation of m-TOR/PI3K/AKT pathway. J. BUON 23, 218–223 (2018)

    PubMed  Google Scholar 

  56. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983). https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  57. G. Karthikkeyan, R. Pervaje, S.K. Pervaje, T.S. Prasad, P.K. Modi, Prevention of MEK-ERK-1/2 hyper-activation underlines the neuroprotective effect of Glycyrrhiza glabra L. (Yashtimadhu) against rotenone-induced cellular and molecular aberrations. J. Ethnopharmacol. 274, 114025 (2021). https://doi.org/10.1016/j.jep.2021.114025

    Article  CAS  PubMed  Google Scholar 

  58. M.A. Najar, A. Aravind, S. Dagamajalu, D. Sidransky, H. Ashktorab, D.T. Smoot, H. Gowda, T.K. Prasad, P.K. Modi, A. Chatterjee, Hyperactivation of MEK/ERK pathway by Ca2+/calmodulin-dependent protein kinase kinase 2 promotes cellular proliferation by activating cyclin-dependent kinases and minichromosome maintenance protein in gastric cancer cells. Mol. Carcinog. 60, 769–783 (2021). https://doi.org/10.1002/mc.23343

    Article  CAS  PubMed  Google Scholar 

  59. S.R. Pavan, J. Venkatesan, A. Prabhu, Anticancer activity of silver nanoparticles from the aqueous extract of Dictyota ciliolata on non-small cell lung cancer cells. J. Drug. Deliv. Sci. Tech. 74, 103525 (2022). https://doi.org/10.1016/j.jddst.2022.103525

    Article  CAS  Google Scholar 

  60. B. Bose, S. Kapoor, U. Sen, D. Chaudhury, P.S. Shenoy, Assessment of oxidative damage in the primary mouse ocular surface cells/stem cells in response to ultraviolet-C (UV-C) damage. J. Vis. Exp. (2020). https://doi.org/10.3791/59924

    Article  PubMed  Google Scholar 

  61. A.P. Sajida, Anti-angiogenic, apoptotic and matrix metalloproteinase inhibitory activity of Withania somnifera (ashwagandha) on lung adenocarcinoma cells. Phytomedicine 90, 153639 (2021). https://doi.org/10.1016/j.phymed.2021.153639

    Article  CAS  PubMed  Google Scholar 

  62. G. Karthikkeyan, S.K. Behera, S.S. Upadhyay, R. Pervaje, T.S. Prasad, P.K. Modi, Metabolomics analysis highlights Yashtimadhu (Glycyrrhiza glabra L.)-mediated neuroprotection in a rotenone-induced cellular model of Parkinson’s disease by restoring the mTORC1-AMPK1 axis in autophagic regulation. Phyto. Ther. Res. 36, 2207 (2022). https://doi.org/10.1002/ptr.7449

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Pavan S R acknowledges the funding support in the form of Senior Research Fellowship from Indian Council of Medical Research (Grant No. 45/10/2022/NAN/BMS). This study was funded with Seed grant (YU/Seed grant/133-2022) from Yenepoya (Deemed to be University).

Funding

This study was funded by Indian Council of Medical Research, Grant No. 45/10/2022/NAN/BMS, awarded to Pavan S R. This study was supported with Seed Grant (YU/Seed grant/133-2022) from Yenepoya (Deemed to be University).

Author information

Authors and Affiliations

Authors

Contributions

SRP carried out the literature survey, performed experiments and drafted the manuscript. AP conceptualized and framed the outline of the study, along with critical revision of the manuscript.

Corresponding author

Correspondence to Ashwini Prabhu.

Ethics declarations

Conflict of interest

Authors declare that they have no conflicts of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Authors give full consent for publishing the material.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

43578_2024_1304_MOESM1_ESM.tif

Supplementary Fig. S1: (A) UV absorption spectra of ZnO, ZnO–NH2, HSP and ZnO-HSP; (B) FT-IR analysis of ZnO–NH2, HSP and ZnO-HSP; (C, (D) DLS analysis of ZnO NPs and ZnO-HSP; (E) Zeta potential of ZnO NPs and ZnO-HSP. Supplementary file 1 (TIF 377 KB)

43578_2024_1304_MOESM2_ESM.tif

Supplementary Fig. S2: (A) SEM morphological analysis of ZnO NPs and ZnO-HSP; (B) XRD analysis of ZnO, HSP, ZnO-HSP; (C) Drug release studies at different pH conditions. Supplementary file 2 (TIF 604 KB)

43578_2024_1304_MOESM3_ESM.tif

Supplementary Fig. S3: (A) Decrease in the colony formation upon treatment; (B) Graphical representation of colonies number (ns: non-significant, ***p < 0.001, **p < 0.01,*p < 0.05). Supplementary file 3 (TIF 642 KB)

43578_2024_1304_MOESM4_ESM.tif

Supplementary Fig. S4: Cell cycle arrest analysis in A549 cells after treatment (A) Control; (B) ZnO NPs; (C) Cisplatin; (D) HSP; (E) ZnO-HSP; (F) Graphical representation of DNA content at different phases; (G) Immunoblotting of cyclin (B; H) Graphical representation of Cyclin B expression with respect to β-actin (ns: non-significant, ***p < 0.001, **p < 0.01,*p < 0.05). Supplementary file 4 (TIF 514 KB)

43578_2024_1304_MOESM5_ESM.tif

Supplementary Fig. S5: Gene expression study carried out in different treatment groups. (A) AKT; (B) ERK; (C) Bax; (D) Bcl2; (E) p53 (ns: non-significant, ***p < 0.001, **p < 0.01,*p < 0.05). Supplementary file 5 (TIF 433 KB)

43578_2024_1304_MOESM6_ESM.tif

Supplementary Fig. S6: A549 cells treated with hesperidin nanoformulation exhibit changes in the expression of proteins involved in apoptosis, cellular migration, AKT/mTOR and MEK/Erk signalling. It also regulates the expression of genes involved in cellular apoptosis (The figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license). Supplementary file 6 (TIF 356 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavan, S.R., Prabhu, A. Novel pH responsive hesperidin nanoformulation exerts anticancer activity on lung adenocarcinoma cells by targeting Akt/mTOR and MEK/ERK pathways. Journal of Materials Research 39, 1217–1231 (2024). https://doi.org/10.1557/s43578-024-01304-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-024-01304-w

Keywords

Navigation