Skip to main content
Log in

A novel precipitation kinetics model for fast-aging process of Al–Zn–Mg–Cu alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper, a set of novel thermo-mechanical coupling kinetics models were developed for the fast aging process of Al–Zn–Mg–Cu alloy. The precipitates models in this paper described the continuous growth behavior of precipitates in the two-step aging, by introducing temperature dependent constants, the contribution of each aging step in the two-step aging process was quantitatively characterized; the analytical formula for the critical temperature of instantaneous nucleation during the aging process was derived; providing a pre-aging time threshold in the competition mechanism, which for the inhibition of precipitates nucleation on dislocations in secondary aging. Subsequently, associated above models with macroscopic material strength, the yield strength of 7075 aluminum alloy after fast aging was predicted. Through the quantitative verification by mechanical properties experiments, the model values have a good agreement with the experimental ones, and the errors are below 8%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure  7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

All the relevant experimental and computational data for the manuscript can be provided upon request.

Abbreviations

\({{\varvec{C}}}_{{\varvec{i}}}\) :

Initial concentration of solutes in the matrix

\({{\varvec{C}}}_{{\varvec{s}}}\) :

Concentration of solutes in the matrix when the precipitates are completely dissolved

\({{\varvec{C}}}_{{\varvec{e}}{\varvec{q}}}\) :

Equilibrium concentration of solutes in the matrix during single-step aging

\({{\varvec{C}}}_{{\varvec{e}}{\varvec{q}}1}\) :

Equilibrium concentration of solutes in the matrix during aging

\({{\varvec{C}}}_{{\varvec{e}}{\varvec{q}}2}\) :

Equilibrium concentration of solutes in the matrix during secondary aging

\({\varvec{C}}({\varvec{t}})\) :

Concentration of solutes in the matrix during single-step aging

\({\varvec{C}}({{\varvec{t}}}_{10})\) :

Concentration of solutes in the matrix after the pre-aging time of \({t}_{10}\)

\({\varvec{\sigma}}\) :

Flow stress

\({{\varvec{\sigma}}}_{0}\) :

Initial stress

\({{\varvec{\sigma}}}_{{\varvec{s}}{\varvec{s}}}\) :

Solid solution stress

\({{\varvec{\sigma}}}_{{\varvec{d}}}\) :

Dislocation stress

\({{\varvec{\sigma}}}_{{\varvec{p}}{\varvec{p}}{\varvec{t}}}\) :

Precipitation stress

\({{\varvec{\sigma}}}_{{\varvec{p}}{\varvec{p}}{\varvec{t}}{\varvec{m}}}\) :

Precipitation stress in matrix

\({{\varvec{\sigma}}}_{{\varvec{p}}{\varvec{p}}{\varvec{t}}{\varvec{d}}}\) :

Precipitation stress on dislocations

\({{\varvec{\sigma}}}_{{\varvec{d}}{\varvec{f}}}\) :

Flow stress with deformation

\({{\varvec{\sigma}}}_{{\varvec{n}}{\varvec{d}}{\varvec{f}}}\) :

Flow stress without deformation

\({\varvec{T}}\) :

Single-step aging temperature

\({{\varvec{T}}}_{1}\) :

Pre-aging temperature

\({{\varvec{T}}}_{2}\) :

Secondary aging temperature

\({{\varvec{T}}}_{{\varvec{s}}}\) :

Aging temperature at which all precipitates are dissolved without deformation

\(\mathbf{D}\) :

Solute atomic diffusion coefficient in matrix during single-step aging

\({\mathbf{D}}_{1}\) :

Solute atomic diffusion coefficient in matrix during pre-aging

\({\mathbf{D}}_{2}\) :

Solute atomic diffusion coefficient in matrix during secondary aging

\({\varvec{t}}\) :

Single-step aging time

\({{\varvec{t}}}_{1}\) :

Pre-aging time

\({{\varvec{t}}}_{2}\) :

Secondary aging time

\({{\varvec{t}}}_{0}\) :

Any aging time when a batch of precipitates begins to nucleate

\({{\varvec{t}}}_{01}\) :

Any pre-aging time when a batch of precipitates begins to nucleate

\({{\varvec{t}}}_{10}\) :

Pre-aging time at the end of pre-aging

\({{\varvec{\tau}}}_{0}\) :

Time-dependence constant in single-step aging

\({{\varvec{\tau}}}_{1}\) :

Time-dependence constant in pre-aging

\({{\varvec{\tau}}}_{2}\) :

Time-dependence constant in secondary aging

\({{\varvec{\uptau}}}_{{\varvec{e}}{\varvec{q}}}\) :

Equivalent time-dependence parameter without deformation at the temperature of secondary aging

\({{\varvec{f}}}_{1}\) :

Volume fraction of precipitates in pre-aging

\({{\varvec{f}}}_{10}\) :

Equilibrium volume fraction of precipitates in pre-aging

\({{\varvec{f}}}_{20}\) :

Equilibrium volume fraction of precipitates in secondary aging

\({{\varvec{f}}}_{{\varvec{m}}{\varvec{a}}{\varvec{x}}}\) :

Volume fraction of precipitates when the solutes dissolved completely

\({{\varvec{Q}}}_{{\varvec{s}}}\) :

Diffusive energy of solute atoms in aging

\(\boldsymbol{\Delta }{{\varvec{G}}}_{{\varvec{m}}}\) :

Free energy of precipitates growth in matrix

\(\boldsymbol{\Delta }{{{\varvec{G}}}_{{\varvec{d}}}}^{\boldsymbol{*}}\) :

Free energy of precipitates nucleation on dislocations

\(\boldsymbol{\Delta }{\varvec{g}}\) :

Precipitate driving force in single-step aging

\(\boldsymbol{\Delta }{{\varvec{g}}}_{1}\) :

Precipitate driving force in pre-aging

\(\boldsymbol{\Delta }{{\varvec{g}}}_{2}\) :

Precipitate driving force in secondary aging

\(\boldsymbol{\Delta }{{\varvec{g}}}_{{\varvec{d}}}\) :

Precipitate driving force of precipitates around dislocations

\(\boldsymbol{\Omega }\) :

Super-saturation of solutes in matrix during single-step aging

\({\boldsymbol{\Omega }}_{1}\) :

Super-saturation of solutes in matrix during pre-aging

\({\boldsymbol{\Omega }}_{2}\) :

Super-saturation of solutes in matrix during secondary aging

\(\mathbf{\varphi }\) :

Aspect ratio of plate-like precipitates during single-step aging

\({\mathbf{\varphi }}_{1}\) :

Aspect ratio of plate-like precipitates during pre-aging

\({\mathbf{\varphi }}_{2}\) :

Aspect ratio of plate-like precipitates during secondary aging

\({{\varvec{r}}}^{\boldsymbol{*}}\) :

Nucleation radius of precipitates during single-step aging

\({{{\varvec{r}}}_{1}}^{\boldsymbol{*}}\) :

Nucleation radius of precipitates during pre-aging

\({{{\varvec{r}}}_{2}}^{\boldsymbol{*}}\) :

Nucleation radius of precipitates during secondary aging

\({{{\varvec{r}}}_{{\varvec{d}}1}}^{\boldsymbol{*}}\) :

Nucleation radius of precipitates around dislocations

\({{{\varvec{r}}}_{{\varvec{d}}2}}^{\boldsymbol{*}\boldsymbol{*}}\) :

Clustering radius of precipitates on dislocations before nucleation

\({{{\varvec{r}}}_{{\varvec{d}}2}}^{\boldsymbol{*}}\) :

Nucleation radius of precipitates on di Slocations

\({\varvec{r}}\) :

Growth radius of precipitates during single-step aging

\({{\varvec{r}}}_{1}\) :

Growth radius of precipitates during pre-aging

\({{\varvec{r}}}_{2}\) :

Growth radius of precipitates during secondary aging

\({{\varvec{N}}}_{1}\) :

Number of precipitates during pre-aging

\(\boldsymbol{\alpha }\) :

Contribution factor of \({\tau }_{eq}\) in the two-step aging

\({\varvec{\upmu}}\) :

Shear modulus

\({\varvec{\upupsilon}}\) :

Poisson’s ratio

\({\varvec{\upgamma}}\) :

Surface energy of precipitates

\(\mathbf{b}\) :

Bergs vector

\(\mathbf{R}\) :

Gas constant

\(\mathbf{k}\) :

Boltzmann constant

\({\mathbf{v}}_{\mathbf{a}\mathbf{t}}\) :

Solute atomic volume

References

  1. W.T. Huo, L.G. Huo, L.S. Zhang, L.S. Zhang, Warm formability and post-forming microstructure/property of high-strength AA 7075–T6 Al alloy. Mat. Sci. Eng. A 675, 44–54 (2016)

    Article  CAS  Google Scholar 

  2. J. Bi, Y.B. Chen, X. Chen, Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion. J. Mater. Sci. Technol. 69, 200–211 (2021)

    Article  CAS  Google Scholar 

  3. J. Lu, Y.L. Song, L. Hua, K.L. Zheng, D.G. Dai, Thermal deformation behavior and processing maps of 7075 aluminum alloy sheet based on isothermal uniaxial tensile tests. J. Alloy. Compd. 767, 856–869 (2018)

    Article  CAS  Google Scholar 

  4. Y.L. Liu, Y. Hang, W.L. Gao, Study on double stage aging process for 7A85 Aluminum Alloy Plate. J. Hunan Univ. 49, 100–107 (2022)

    Google Scholar 

  5. X.H. Li, J.N. He, R.M. Su, Y.P. Yang, S.N. Nie, B. Tan, Effect of double stage aging on stress corrosion resistance of 7075 Alloy. Non-Ferrous Metal Sci. Metals. 13, 69–75 (2022)

    Google Scholar 

  6. J.H. Zheng, Y.C. Dong, K.L. Zheng, H.S. Dong, J.G. Lin, J. Jiang, T.A. Dean, Experimental investigation of novel fast-ageing treatments for AA6082 in supersaturated solid solution state. J. Alloy. Compd. 810, 151934 (2019)

    Article  CAS  Google Scholar 

  7. Y.S. Lee, D.H. Koh, H.W. Kim, Y.S. Ahn, Improved bake-hardening response of Al-Zn-Mg-Cu alloy through pre-aging treatment. Scripta Mater. 147, 45–49 (2018)

    Article  CAS  Google Scholar 

  8. P. Zhou, Y.L. Song, J. Lu, L. Hua, W.L. Wu, Q. Sun, J.J. Su, Novel fast-aging process for Al–Zn–Mg–Cu alloy sheets and its micro-mechanisms. Mat. Sci. Eng. A 856, 143996 (2022)

    Article  CAS  Google Scholar 

  9. C. Zener, Theory of growth of spherical precipitates from solid solution. J. Appl. Phys. 20, 950–995 (1949)

    Article  ADS  CAS  Google Scholar 

  10. H. Aaron, D. Fainstein, G. Kotler, Diffusion-limited phase transformations: a comparison and critical evaluation of the mathematical approximations. Appl. Phys. 41, 4404–4410 (1970)

    Article  Google Scholar 

  11. H.R. Shercliff, M.F. Ashby, A process model for age hardening of aluminium alloys-I. The model. Acta. Mater 38, 1789–2180 (1990)

    Article  CAS  Google Scholar 

  12. S. Esmaeili, X. Wang, D.J. LloydW, J. Poole, On the precipitation-hardening behavior of the Al-Mg-Si-Cu alloy AA6111. Metall. Mater. Trans. A 34, 751–763 (2003)

    Google Scholar 

  13. R. Chen, K.Y. Xu, H.T. Guo, Z.Y. Xia, Q.F. Wu, B.C. Liu, Modeling the precipitation kinetics and tensile properties in Al-7Si-Mg cast aluminum alloys. Mat. Sci. Eng. A 685, 403–416 (2017)

    Article  CAS  Google Scholar 

  14. S. Esmaeili, D. Lloyd, W.J. Poole, A yield strength model for the Al-Mg-Si-Cu alloy AA6111. Acta Mater. 51, 2243–2257 (2003)

    Article  ADS  CAS  Google Scholar 

  15. S. Esmaeili, D. Lloyd, Modeling of precipitation hardening in pre-aged AlMgSi(Cu) alloys. Acta Mater. 53, 5257–5271 (2005)

    Article  ADS  CAS  Google Scholar 

  16. Q.L. Zhang, X. Luan, S.S. Dhawan, D.J. Politis, Q. Du, M.W. Fu, K. Wang, M.M. Gharbie, L.L. Wang, Development of the post-form strength prediction model for a high strength 6xxx aluminium alloy with pre-existing precipitates and residual dislocations. Int. J. Plasticity. 119, 230–248 (2019)

    Article  CAS  Google Scholar 

  17. R. Allen, J. Vander Sande, The oriented growth of precipitates on dislocations in Al-Zn-Mg-part II. A model. Acta. Mater 28, 1197–1206 (1980)

    Article  CAS  Google Scholar 

  18. N.N. Han, X.M. Zhang, S.D.L.B. Ke, XX., Effects of pre-stretching and ageing on the strength and fracture toughness of aluminum alloy 7050. Mat. Sci. Eng. A. 528, 3714–3721 (2011)

    Article  Google Scholar 

  19. S.Q. Xiao, P. Paasen, A model for the nucleation of a spherical coherent precipitate near an edge dislocation. Scripta Meter 23, 365–370 (1988)

    Article  Google Scholar 

  20. S.Q. Xiao, P.J. Wilbrandt, P. Haasen, HREM observation of the nlicleation of "f’ precipitates at dislocations in a ni-12at% Al alloy. Scr. Metall. 23, 295–300 (1988)

    Article  Google Scholar 

  21. L.K. Berg, J. Gjønnes, V. Hansen, X.Z. Li, N. Knutson-Wedel, G. Waterloo, D. Schryvers, L.R. Wallenberg, GP-zones in Al–Zn–Mg alloys and their role in artificial aging. Acta Mater. 49, 3443–3451 (2001)

    Article  ADS  CAS  Google Scholar 

  22. A. Deschamps, Y. Brechet, Influence of predeformation and ageing of an Al–Zn–Mg alloy—II. Modeling of precipitation kinetics and yield stress. Acta Mater. 47, 293–305 (1999)

    Article  ADS  CAS  Google Scholar 

  23. F. Perrard, A. Deschamps, P. Maugis, Modelling the precipitation of NbC on dislocations in a-Fe. Acta Mater. 55, 1255–1266 (2007)

    Article  ADS  CAS  Google Scholar 

  24. W.J. Poole, A model for predicting the effect of deformation after solution treatment on the subsequent artificial aging behavior of AA7030 and AA7108 alloys. Metall. Mater. Trans. A 31, 2327–2338 (2000)

    Article  Google Scholar 

  25. Q. Du, W.J. Poole, M.A. Wells, A mathematical model coupled to CALPHAD to predict precipitation kinetics for multicomponent aluminum alloys. Acta Mater. 60, 3830–3839 (2012)

    Article  ADS  CAS  Google Scholar 

  26. Z.S. Liu, V. Mohles, O. Engler, G. Gottstein, Thermodynamics based modelling of the precipitation kinetics in commercial aluminium alloys. J. Alloy. Compd. 81, 410–417 (2014)

    CAS  Google Scholar 

  27. O.R. Myhr, Ø. Grong b, H.G. Fjær, C.D. Marioara, Modelling of the microstructure and strength evolution in Al–Mg–Si alloys during multistage thermal processing. Acta Mater. 52, 4997–5008 (2004)

    Article  ADS  CAS  Google Scholar 

  28. B. Seisenbacher, F. Grün G, Investigation and simulation of the age-dependent behavior of an aluminium alloy under thermomechanical loading. Mech. Mater. 151, 103612 (2020)

    Article  Google Scholar 

  29. A. Assadiki, V. Esin, R. Martinez, W.J. Poole, G. Cailletaud, Modelling precipitation hardening in an A356+0.5 wt%Cu cast aluminum alloy. Mat. Sci. Eng. A 819, 141450 (2021)

    Article  CAS  Google Scholar 

  30. J. Luo, H.Y. Luo, R.Z. Wang, Y. Ma, Effect of pre-ageing treatment on second nucleating of GPII zones and precipitation kinetics in an ultrafine grained 7075 aluminum alloy. Mater. Design 187, 108402 (2020)

    Article  CAS  Google Scholar 

  31. G. Liu, X.D. Ding, J. Sun, K.H. Chen, Aging strengthening model of aluminum alloy with discoid precipitates. Chin. J. Nonferrous Metals 11, 338–348 (2001)

    Google Scholar 

  32. J. Lothe, Theory of dislocations (McGraw-Hill Inc, New York, 1968)

    Google Scholar 

  33. J. Friedel, Dislocations (Pergamon press, France, 1964)

    Google Scholar 

  34. K.S. Ghosh, N. Gao, Determination of kinetic parameters from calorimetric study of solid state reactions in 7150 Al-Zn-Mg alloy. T. Nonferr. Metal. Soc. 437, 584–587 (2005)

    Google Scholar 

  35. J.W. Cahn, The kinetics of cellular segregation reactions. Acta Mater. 7, 18–28 (1959)

    Article  CAS  Google Scholar 

  36. W.J. Poole, D.J. Lloyd, J.D. Embury, The effect of natural ageing on the evolution of yield strength during artificial ageing for Al-Mg-Si-Cu alloys. Mat. Sci. Eng. A 30, 234–236 (1997)

    Google Scholar 

  37. N. Krasilnikov, W. Lojkowski, Z. Pakiela, Tensile strength and ductility of ultra-fine-grained nickel processed by severe plastic deformation. Mat. Sci. Eng. A 397, 330–397 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors duly acknowledge the financial support from the National Natural Science Foundation of China (Grant no. 51975440); the National Key R&D Program of China (No. 2020YFA0714900); the 111 Project (Grant no. B17034); and the Innovative Research Team Development Program of Ministry of Education of China (Grant no. IRT_17R83).

Funding

Funding was provided by the financial support from the National Natural Science Foundation of China (Grant no. 51975440).

Author information

Authors and Affiliations

Authors

Contributions

PZ: Conceptualization, Methodology, Data adjustment, Writing original draft. YS: Writing—Review & Editing, Supervision, Project administration, Funding acquisition. JL: Writing—Review & Editing. LH: Supervision. LH: Investigation.

Corresponding authors

Correspondence to Yanli Song or Lin Hua.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled “A novel precipitation kinetics model for fast-aging process of Al–Zn–Mg–Cu alloy”.

Ethical approval

Written informed consent for publication of this paper was obtained from the Wuhan University of technology and all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Song, Y., Lu, J. et al. A novel precipitation kinetics model for fast-aging process of Al–Zn–Mg–Cu alloy. Journal of Materials Research 39, 928–943 (2024). https://doi.org/10.1557/s43578-024-01281-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-024-01281-0

Keywords

Navigation