Skip to main content
Log in

Therapeutic implication of MicroRNA-320a antagonist in attenuating blood clots formed during venous thrombosis

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Venous thrombosis (VT) is a complex multi-factorial disease and a major health concern worldwide. Its clinical implications include deep vein thrombosis (DVT) and pulmonary embolism (PE). VT pathogenesis involves intricate interplay of various coagulants and anti-coagulants. Growing evidences from epidemiological studies have shown that many non-coding microRNAs play significant regulatory role in VT pathogenesis by modulating expressions of large number of gene involved in blood coagulation. Present study aimed to investigate the effect of human micro RNA (hsa-miR)-320a antagonist on thrombus formation in VT. Surgery was performed on Sprague–Dawley (SD) rats, wherein the inferior vena cava (IVC) was ligated to introduce DVT. Animals were divided into four groups (n = 5 in each group); Sham controls (Sham), IVC ligated-DVT (DVT), IVC ligated-DVT + transfection reagent (DVT-NC) and IVC ligated-DVT + miR320a antagonist (DVT-miR-320a antagonist). IVC was dissected after 6 h and 24 h of surgery to estimate thrombus weight and coagulatory parameters such as levels of D-dimer, clotting time and bleeding time. Also, ELISA based biochemical assays were formed to assess toxicity of miRNA antagonist in animals. Our experimental analysis demonstrated that there was a marked reduction in size of thrombus in hsa-miR-320a antagonist treated animals, both at 6 h and 24 h. There was a marked reduction in D-dimer levels in hsa-miR-320a antagonist treated animals. Also, blood clotting time was delayed and bleeding time was increased significantly in hsa-miR-320a antagonist treated rats compared to the non-treated and Sham rats. There was no sign of toxicity in treated group compared to control animals. Hsa-miR-320a antagonist could be promising therapeutic target for management of VT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study available from the corresponding author on reasonable request.

Abbreviations

BT:

Bleeding time

CT:

Clotting time

DVT:

Deep vein thrombosis

IVC:

Inferior vena cava

PE:

Pulmonary embolism

VT:

Venous thrombosis

References

  1. ISTH Steering Committee for World Thrombosis Day (2014) Thrombosis: a major contributor to the global disease burden. J Thromb Haemost 12(10):1580–1590. https://doi.org/10.1111/jth.12698

    Article  Google Scholar 

  2. Naess IA, Christiansen SC, Romundstad P, Cannegieter SC, Rosendaal FR, Hammerstrøm J (2007) Incidence and mortality of venous thrombosis: a population-based study. J Thromb Haemost 5(4):692–699. https://doi.org/10.1111/j.1538-7836.2007.02450.x

    Article  CAS  PubMed  Google Scholar 

  3. Schulman S, Lindmarker P, Holmström M, Lärfars G, Carlsson A, Nicol P, Svensson E, Ljungberg B, Viering S, Nordlander S, Leijd B, Jahed K, Hjorth M, Linder O, Beckman M (2006) Post-thrombotic syndrome, recurrence, and death 10 years after the first episode of venous thromboembolism treated with warfarin for 6 weeks or 6 months. J Thromb Haemost 4(4):734–742. https://doi.org/10.1111/j.1538-7836.2006.01795.x

    Article  CAS  PubMed  Google Scholar 

  4. Diaz JA, Obi A, Myers DD, Wrobleski SK, Henke PK, Mackman N, Wakefield TW (2012) Critical review of mouse models of venous thrombosis. Arterioscler Thromb Vasc Biol 32:556–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Heit JA, O’Fallon WM, Petterson TM, Lohse CM, Silverstein MD, Mohr DN, Melton LJ (2002) Relative impact of risk factors for deep vein thrombosis and pulmonary embolism: a population-based study. Arch Intern Med 162:1245–1248

    Article  PubMed  Google Scholar 

  6. Zwicker I et al (2009) Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res 15:6830–6840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou X et al (2010) Incidence and risk factors of venous thromboembolic events in lymphoma. Am J Med 123:935–941

    Article  PubMed  Google Scholar 

  8. Demers C et al (1998) Incidence of venographically proved deep vein thrombosis after knee arthroscopy. Arch Intern Med 158:47–50

    Article  CAS  PubMed  Google Scholar 

  9. Chan MY, Andreotti F, Becker RC (2008) Hypercoagulable states in cardiovascular disease. Circulation 118:2286–2297

    Article  PubMed  Google Scholar 

  10. Anand AC, Jha SK, Saha A, Sharma V, Adya CM (2001) Thrombosis as a complication of extended stay at high altitude. Natl Med J India 14(4):197–201

    CAS  PubMed  Google Scholar 

  11. Khalil KF, Saeed W (2010) Pulmonary embolism in soldiers serving at high altitude. J Coll Physicians Surg Pak 20:7

    Google Scholar 

  12. Kumar S (2006) High altitude induced deep venous thrombosis: a study of 28 cases. Indian J Surg 68:84–88

    Google Scholar 

  13. Rao KS (2006) Other medical illnesses aggravated by high altitude. In: Anand AC, Narula AS, Kakkar R, Kalra R (eds) Textbook of environmental emergencies. Department of Internal Medicine Armed Forces Medical College, Pune, pp 26–29

    Google Scholar 

  14. Singh I, Chohan IS (1972) Blood coagulation changes at high altitude predisposing to pulmonary hypertension. Br Heart J 34:611–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brill A, Fuchs TA, Chauhan AK et al (2011) von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood 117:1400–1407. https://doi.org/10.1182/blood-2010-05-287623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mammen EF (1992) Pathogenesis of venous thrombosis. Chest. https://doi.org/10.1378/chest.102.6_supplement.640s

    Article  PubMed  Google Scholar 

  17. Sevitt S (1974) The structure and growth of valve-pocket thrombi in femoral veins. J Clin Pathol 27:517–528. https://doi.org/10.1136/jcp.27.7.517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brühl MLV, Stark K, Steinhart A et al (2012) Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 209:819–835. https://doi.org/10.1084/jem.20112322

    Article  CAS  Google Scholar 

  19. Schönfelder T, Jäckel S, Wenzel P (2017) Mouse models of deep vein thrombosis. Gefasschirurgie 22:28–33. https://doi.org/10.1007/s00772-016-0227-6

    Article  PubMed  Google Scholar 

  20. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  21. Iwakawa HO, Tomari Y (2015) The functions of microRNAs: mRNA decay and translational repression. Trends Cell Biol 25(11):651–665

    Article  CAS  PubMed  Google Scholar 

  22. Zhu W, Qian J, Ma L, Ma P, Yang F, Shu Y (2017) MiR-346 suppresses cell proliferation through SMYD3 dependent approach in hepatocellular carcinoma. Oncotarget 8(39):65218–65229. https://doi.org/10.18632/oncotarget.18060

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Armand-Labit V, Pradines A (2017) Circulating cell-free MicroRNAs as clinical cancer biomarkers. Biomol Concepts 8:61–81

    Article  CAS  PubMed  Google Scholar 

  25. Loosen SH, Schueller F, Trautwein C et al (2017) Role of circulating microRNAs in liver diseases. World J Hepatol 9:586–594

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rayner K, Dimmeler S, Calin GA et al (2014) Novel biomarkers for acute myocardial infarction: is microRNA the new kid on the block? ClinChem 60:812–817

    Google Scholar 

  27. Liu X, Cheng Y, Zhang S, Lin Y, Yang J, Zhang C (2009) A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res 104:476–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tan M, Yan HB, Li JN et al (2016) Thrombin stimulated platelet-derived exosomes inhibit platelet-derived growth factor receptor-beta expression vascular smooth muscle cells. Cell Physiol Biochem 38:2348–2365

    Article  CAS  PubMed  Google Scholar 

  29. Weber C, Schober A, Zernecke A (2010) Micrornas in arterial remodelling, inflammation and atherosclerosis. Curr Drug Targets 11:950–956

    Article  CAS  PubMed  Google Scholar 

  30. Hembrom AA, Srivastava S, Garg I, Kumar B (2020) MicroRNAs in venous thrombo-embolism. Clin Chim Acta 504:66–72. https://doi.org/10.1016/j.cca.2020.01.034

    Article  CAS  PubMed  Google Scholar 

  31. Hembrom AA, Ghosh N, Kumar V, Garg I, Ganju L, Srivastava S (2022) Panel of regulatory miRNAs for blood coagulation under normoxic and hypoxic conditions. Def Life Sci J 7(1):17–26

    Article  Google Scholar 

  32. Srivastava S, Garg I, Kumari B, Rai C, Singh Y, Kumar V, Yanamandra U, Singh J, Bansal A, Kumar B (2019) Diagnostic potential of circulating micro RNA hsa-miR-320 in patients of high altitude induced deep vein thrombosis: an Indian study. Gene Rep. 17:100550

    Article  Google Scholar 

  33. Srivastava S, Garg I, Kumar B (2019) An In-Silico argument for Micro-RNAs showing pivotal role in susceptibility towards high altitude induced venous thrombo-embolism (HA-VTE). Int J Gen Sci 6(1):1–11

    Google Scholar 

  34. Sahu A, Jha PK, Prabhakar A, Singh HD, Gupta N, Chatterjee T, Tyagi T, Sharma S, Kumari B, Singh S, Nair V, Goel S, Ashraf MZ (2017) MicroRNA-145 impedes thrombus formation via targeting tissue factor in venous thrombosis. EBioMedicine 26:175–186

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sahu A, Jha PK, Prabhakar A, Singh HD, Gupta N, Chatterjee T, Tyagi T, Sharma S, Kumari B, Singh S et al (2017) MicroRNA-145 impedes thrombus formation via targeting tissue factor in venous thrombosis. EBioMedicine 26:175–186

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tyagi T, Ahmad S, Gupta N, Sahu A, Ahmad Y, Nair V, Chatterjee T, Bajaj N, Sengupta S, Ganju L, Singh SB, Ashraf MZ (2013) Altered expression of platelet proteins and calpain activity mediate hypoxia-induced prothrombotic phenotype. Blood. https://doi.org/10.1182/blood-2013-05-501924

    Article  PubMed  Google Scholar 

  37. Gupta N, Sahu A, Prabhakar A, Chatterjee T, Tyagi T, Kumari B, Khan N, Nair V, Bajaj N, Sharma M, Ashraf MZ (2017) Activation of NLRP3 inflammasome complex potentiates venous thrombosis in response to hypoxia. Proc Natl Acad Sci U S A 114(18):4763–4768. https://doi.org/10.1073/pnas.1620458114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang W, Zhu X, Du X, Xu A, Yuan X, Zhan Y, Liu M, Wang S (2019) MiR-150 promotes angiogensis and proliferation of endothelial progenitor cells in deep venous thrombosis by targeting SRCIN1. Microvasc Res 123:35–41

    Article  CAS  PubMed  Google Scholar 

  39. Wang X, Sundquist K, Svensson PJ et al (2019) Association of recurrent venous thromboembolism and circulating microRNAs. Clin Epigenet 11:28

    Article  Google Scholar 

  40. Rodriguez-Rius A, Lopez S, Martinez-Perez A, Souto JC, Soria JM (2020) Identification of a plasma MicroRNA Profile associated with venous thrombosis. Arterioscler, Thromb, Vasc Biol 40:1392–1399

    Article  CAS  PubMed  Google Scholar 

  41. Rodriguez-Rius A, Lopez S, Martinez-Perez A, Souto JC, Soria JM (2020) Identification of a plasma MicroRNA profile associated with venous thrombosis. Arterioscler Thromb Vasc Biol 40(5):1392–1399. https://doi.org/10.1161/ATVBAHA.120.314092

    Article  CAS  PubMed  Google Scholar 

  42. Mussbacher M, Krammer TL, Heber S et al (2020) Impact of anticoagulation and sample processing on the quantification of human blood-derived microRNA signatures. Cells 9(8):E1915. https://doi.org/10.3390/cells9081915

    Article  CAS  Google Scholar 

  43. Jiang Z, Ma J, Wang Q, Wu F, Ping J, Ming L (2018) Combination of circulating miRNA-320a/b and D-dimer improves diagnostic accuracy in deep vein thrombosis patients. Med Sci Monit 6(24):2031–2037

    Article  Google Scholar 

  44. Starikova I, Jamaly S, Sorrentino A, Blondal T, Latysheva N, Sovershaev M, Hansen JB (2015) Differential expression of plasma miRNAs in patients with unprovoked venous thromboembolism and healthy control individuals. Thromb Res 136(3):566–572

    Article  CAS  PubMed  Google Scholar 

  45. Thomas PD, Ebert D, Muruganujan A, Mushayahama T, Albou L-P, Mi H (2022) PANTHER: making genome-scale phylogenetics accessible to all. Protein Soc 31(1):8–22. https://doi.org/10.1002/pro.421

    Article  CAS  Google Scholar 

  46. Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11:441–450. https://doi.org/10.1016/j.devcel.2006.09.009

    Article  CAS  PubMed  Google Scholar 

  47. Paul P, Chakraborty A, Sarkar D, Langthasa M, Rahman M, Bari M, Singha RS, Malakar AK, Chakraborty S (2018) Interplay between miRNAs and human diseases. J Cell Physiol 233:2007–2018. https://doi.org/10.1002/jcp.25854

    Article  CAS  PubMed  Google Scholar 

  48. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222. https://doi.org/10.1038/nrd.2016.246

    Article  CAS  PubMed  Google Scholar 

  49. Van Rooij E, Kauppinen S (2014) Development of microRNA therapeutics is coming of age. EMBO Mol Med 6:851–864. https://doi.org/10.15252/emmm.201100899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Morelli VM, Brækkan SK, Hansen JB (2020) Role of microRNAs in venous thromboembolism. Int J Mol Sci 21(7):2602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Denby L, Ramdas V, Lu R, Conway BR, Grant JS, Dickinson B, Aurora AB, McClure JD, Kipgen D, Delles C, van Rooij E, Baker AH (2014) MicroRNA-214 antagonism protects against renal fibrosis. J Am Soc Nephrol 25(1):65–80

    Article  CAS  PubMed  Google Scholar 

  52. Zhang H, Qu Y, Wang A (2018) Antagonist targeting microRNA-146a protects against lithium-pilocarpine-induced status epilepticus in rats by nuclear factor-κB pathway. Mol Med Rep 17:5356–5361

    CAS  PubMed  Google Scholar 

  53. Hum C, Loiselle J, Ahmed N, Shaw TA, Toudic C, Pezacki JP (2021) MicroRNA mimics or inhibitors as antiviral therapeutic approaches against COVID-19. Drugs 81(5):517–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sun L, Li X, Li Q, Wang L, Li J, Shu C (2021) Multiple arterial and venous thromboembolism in a male patient with hereditary protein C deficiency. Medicine (Baltimore) 100(15):e25575. https://doi.org/10.1097/MD.0000000000025575

    Article  PubMed  Google Scholar 

  55. Du X, Hong L, Sun L, Sang H, Qian A, Li W, Zhuang H, Liang H, Song D, Li C et al (2019) miR-21 induces endothelial progenitor cells proliferation and angiogenesis via targeting FASLG and is a potential prognostic marker in deep venous thrombosis. J Transl Med 17:270

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kong L, Du X, Hu N, Li W, Wang W, Wei S, Zhuang H, Li X, Li C (2016) Downregulation of let-7e-5p contributes to endothelial progenitor cell dysfunction in deep vein thrombosis via targeting FASLG. Thromb Res 138:30–36

    Article  CAS  PubMed  Google Scholar 

  57. Kong L, Hu N, Du X, Wang W, Chen H, Li W, Wei S, Zhuang H, Li X, Li C (2016) Upregulation of miR-483-3p contributes to endothelial progenitor cells dysfunction in deep vein thrombosis patients via SRF. J Transl Med 14:23

    Article  PubMed  PubMed Central  Google Scholar 

  58. Meng Q, Wang W, Yu X, Li W, Kong L, Qian A, Li C, Li X (2015) Upregulation of MicroRNA-126 contributes to endothelial progenitor cell function in deep vein thrombosis via its target PIK3R2. J Cell Biochem 116:1613–1623. https://doi.org/10.1002/jcb.25115

    Article  CAS  PubMed  Google Scholar 

  59. Wang W, Li C, Li W, Kong L, Qian A, Hu N, Meng Q, Li X (2014) MiR-150 enhances the motility of EPCs in vitro and promotes EPCs homing and thrombus resolving in vivo. Thromb Res 133:590–598

    Article  CAS  PubMed  Google Scholar 

  60. Sun S, Chai S, Zhang F, Lu L (2020) Overexpressed microRNA-103a-3p inhibits acute lower-extremity deep venous thrombosis via inhibition of CXCL12. IUBMB Life 72(3):492–504. https://doi.org/10.1002/iub.2168

    Article  CAS  PubMed  Google Scholar 

  61. Sun S, Chai S, Zhang F, Lu L (2020) Overexpressed microRNA-103a-3p inhibits acute lower-extremity deep venous thrombosis via inhibition of CXCL12. IUBMB Life 72:492–504. https://doi.org/10.1002/iub.2168

    Article  CAS  PubMed  Google Scholar 

  62. Zhang Y, Zhang Z, Wei R, Miao X, Sun S, Liang G, Chu C, Zhao L, Zhu X, Guo Q et al (2020) IL (Interleukin)-6 contributes to deep vein thrombosis and is negatively regulated by miR-338-5p. Arterioscler Thromb Vasc Biol 40:323–334

    Article  CAS  PubMed  Google Scholar 

  63. McCreight J, Schneider S, Wilburn D, Swanson W (2017) Evolution of microRNA in primates. PLoS ONE 12:e0176596. https://doi.org/10.1371/journal.pone.0176596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen X, Gao S, Zhao Z, Liang G, Kong J, Feng X (2020) MicroRNA-320d regulates tumor growth and invasion by promoting FoxM1 and predicts poor outcome in gastric cardiac adenocarcinoma. Cell Biosci 10:80. https://doi.org/10.1186/s13578-020-00439-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fang Z, Tang J, Bai Y, Lin H, You H, Jin H, Lin L, You P, Li J, Dai Z et al (2015) Plasma levels of microRNA-24, microRNA-320a, and microRNA-423-5p are potential biomarkers for colorectal carcinoma. J Exp Clin Cancer Res 34:86. https://doi.org/10.1186/s13046-015-0198-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hong H, Zhu H, Zhao S, Wang K, Zhang N, Tian Y, Li Y, Wang Y, Lv X, Wei T et al (2019) The novel circCLK3/miR-320a/FoxM1 axis promotes cervical cancer progression. Cell Death Dis 10:950. https://doi.org/10.1038/s41419-019-2183-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lv Q, Du H, Liu Y, Huang Y, Wang G, Zhang X, Chen S, Zhou H (2017) Low expression of microRNA-320b correlates with tumorigenesis and unfavorable prognosis in glioma. Oncol Rep 38:959–966. https://doi.org/10.3892/or.2017.5762

    Article  CAS  PubMed  Google Scholar 

  68. Thibord F, Munsch G, Perret C, Suchon P, Roux M, Ibrahim-Kosta M, Goumidi L, Deleuze JF, Morange PE, Trégouët DA (2020) Bayesian network analysis of plasma microRNA sequencing data in patients with venous thrombosis. Eur Heart J Suppl 22(Suppl C):C34–C45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Diener C, Keller A, Meese E (2022) Emerging concepts of miRNA therapeutics: from cells to clinic. Trends Genet 38(6):613–626

    Article  CAS  PubMed  Google Scholar 

  70. Nagalla S, Shaw C, Kong X et al (2011) Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood 117(19):5189–5197. https://doi.org/10.1182/blood-2010-09-299719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are extremely thankful to Animal house of DIPAS for providing healthy animals for the study. Authors also acknowledge efforts and cooperation of technical staff and research scholars during the experiments.

Funding

Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), S&T(A)/22-23/DIP-276.

Author information

Authors and Affiliations

Authors

Contributions

SS: experiment design, analysis and manuscript writing; IG and NG: experimental work and analysis; RV: review and editing of manuscript.

Corresponding author

Correspondence to Swati Srivastava.

Ethics declarations

Conflict of interest

The manuscript has been read and approved for submission by all authors. No potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S., Garg, I., Ghosh, N. et al. Therapeutic implication of MicroRNA-320a antagonist in attenuating blood clots formed during venous thrombosis. J Thromb Thrombolysis 57, 699–709 (2024). https://doi.org/10.1007/s11239-024-02947-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-024-02947-6

Keywords

Navigation