Skip to main content
Log in

Structural Investigation, Spectroscopic Properties, DFT Calculations and Electrical Properties of [C6H9N2]2 Sb2Cl8 Hybrid Compound

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This research work's central focus is synthesizing a novel hybrid compound, formulated as [C6H9N2]2Sb2Cl8. This compound was prepared using the slow evaporation method and confirmed through single-crystal X-ray diffraction at 293 K. It crystallizes in the triclinic system with the centrosymmetric space group P \(\overline{1 }\) symmetry, and its unit cell (Z = 2). The intermolecular interactions have been studied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the Cl–H contacts contribute the most to the surface area (63.6%). Computational studies that include geometry optimization and harmonic vibrational frequencies were performed using B3LYP method with GENECP set. Acceptable consistency was observed between calculated and experimental results. The assignment of wavenumbers was based on potential energy distribution (PED) using Vibrational Energy Distribution Analysis (VEDA) software. The optical band gap determined by UV–Visible spectroscopy is 3.48 eV for a direct allowed transition. Impedance spectroscopy was performed over a temperature range of 313 K to 413 K and a frequency range of 0.1 Hz to 1 MHz. The Nyquist plots indicated the presence of grain contributions. The conductivity study revealed that the synthesized material exhibits semiconductor behavior. A thermally activated conduction process was identified through the study of alternating conductivity, with a calculated activation energy of 1.104 eV. Additionally, the title compound exhibits a negative temperature coefficient of resistivity (TCR) with value of − 13%, suggesting the suitability of the sample for IR radiation detection applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

CCDC (2105516) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

References

  1. L. Chen, W.-Q. Liao, Y. Ai, J. Li, S. Deng, Y. Hou, and Y.-Y. Tang (2020). J. Am. Chem. Soc. 142, 6236. https://doi.org/10.1021/jacs.0c00315.

    Article  CAS  PubMed  Google Scholar 

  2. X.-J. Song, Z.-X. Zhang, X.-G. Chen, H.-Y. Zhang, Q. Pan, J. Yao, Y.-M. You, and R.-G. Xiong (2020). J. Am. Chem. Soc. 142, 9000. https://doi.org/10.1021/jacs.0c02924.

    Article  CAS  PubMed  Google Scholar 

  3. Y.-Y. Tang, W.-Y. Zhang, P.-F. Li, H.-Y. Ye, Y.-M. You, and R.-G. Xiong (2016). J. Am. Chem. Soc. 138, 15784. https://doi.org/10.1021/jacs.6b10595.

    Article  CAS  PubMed  Google Scholar 

  4. M. A. Green, A. Ho-Baillie, and H. J. Snaith (2014). Nat. Photonics 8, 506. https://doi.org/10.1038/nphoton.2014.134.

    Article  ADS  CAS  Google Scholar 

  5. Y.-H. Kim, H. Cho, and T.-W. Lee (2016). Proc. Natl. Acad. Sci. U. S. A. 113, 11694. https://doi.org/10.1073/pnas.1607471113.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. M. Wojtaś, A. Gagor, O. Czupiński, A. Pietraszko, and R. Jakubas (2009). J. Solid State Chem. 182, 3021. https://doi.org/10.1016/j.jssc.2009.07.055.

    Article  ADS  CAS  Google Scholar 

  7. Y. Ai, Y.-L. Zeng, W.-H. He, X.-Q. Huang, and Y.-Y. Tang (2020). J. Am. Chem. Soc. 142, 13989. https://doi.org/10.1021/jacs.0c06936.

    Article  CAS  PubMed  Google Scholar 

  8. S. Deng, J. Li, X. Chen, Y. Hou, and L. Chen (2020). Chin. Chem. Lett. 31, 1686. https://doi.org/10.1016/j.cclet.2019.11.011.

    Article  CAS  Google Scholar 

  9. J.-Y. Li, Q.-L. Xu, S.-Y. Ye, L. Tong, X. Chen, and L.-Z. Chen (2021). Chem. Commun. Camb. Engl. 57, 943. https://doi.org/10.1039/d0cc07377f.

    Article  CAS  Google Scholar 

  10. L.-Z. Chen and X.-X. Cao (2017). Chin. Chem. Lett. 28, 400. https://doi.org/10.1016/j.cclet.2016.10.037.

    Article  ADS  CAS  Google Scholar 

  11. Y.-Y. Tang, Y. Xie, Y. Ai, W.-Q. Liao, P.-F. Li, T. Nakamura, and R.-G. Xiong (2020). J. Am. Chem. Soc. 142, 21932. https://doi.org/10.1021/jacs.0c11416.

    Article  CAS  PubMed  Google Scholar 

  12. S. Wang, L. Li, Z. Sun, C. Ji, S. Liu, Z. Wu, S. Zhao, A. Zeb, M. Hong, and J. Luo (2017). J. Mater. Chem. C 5, 4731. https://doi.org/10.1039/C7TC00279C.

    Article  CAS  Google Scholar 

  13. Y. Xie, Y. Ai, Y.-L. Zeng, W.-H. He, X.-Q. Huang, D.-W. Fu, J.-X. Gao, X.-G. Chen, and Y.-Y. Tang (2020). J. Am. Chem. Soc. 142, 12486. https://doi.org/10.1021/jacs.0c05372.

    Article  CAS  PubMed  Google Scholar 

  14. H. Cheng, C. Cao, Y. Zhang, D. Wang, W. Yang, and R. Xie (2022). New J. Chem. 46, 16273. https://doi.org/10.1039/D2NJ03090J.

    Article  CAS  Google Scholar 

  15. G. A. Mousdis, N.-M. Ganotopoulos, H. Barkaoui, Y. Abid, V. Psycharis, A. Savvidou, and C. P. Raptopoulou (2017). Eur. J. Inorg. Chem. 2017, 3401. https://doi.org/10.1002/ejic.201700277.

    Article  CAS  Google Scholar 

  16. A. Piecha, R. Jakubas, A. Pietraszko, J. Baran, W. Medycki, and D. Kruk (2009). J. Solid State Chem. 182, 2949. https://doi.org/10.1016/j.jssc.2009.08.007.

    Article  ADS  CAS  Google Scholar 

  17. B. M. Benin, K. M. McCall, M. Wörle, D. Borgeaud, T. Vonderach, K. Sakhatskyi, S. Yakunin, D. Günther, and M. V. Kovalenko (2021). Chem. Mater. Publ. Am. Chem. Soc. 33, 2408. https://doi.org/10.1021/acs.chemmater.0c044.

    Article  CAS  Google Scholar 

  18. G. C. Anyfantis, N.-M. Ganotopoulos, A. Savvidou, C. P. Raptopoulou, V. Psycharis, and G. A. Mousdis (2018). Polyhedron 151, 299. https://doi.org/10.1016/j.poly.2018.05.024.

    Article  CAS  Google Scholar 

  19. Oxford Diffraction, CrysAlis CCD and CrysAlis RED (Oxford Diffraction Ltd, Abingdon, 2009).

    Google Scholar 

  20. L. J. Farrugia (1999). J. Appl. Crystallogr. 32, 837. https://doi.org/10.1107/S0021889899006020.

    Article  ADS  CAS  Google Scholar 

  21. G. M. Sheldrick (2015). Acta Cryst. A71, 3–8. https://doi.org/10.1107/S2053229614024218.

    Article  CAS  Google Scholar 

  22. G. M. Sheldrick (2015). Acta Cryst. C71, 3–8. https://doi.org/10.1107/S2053229614024218.

    Article  CAS  Google Scholar 

  23. C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, and P. A. Wood (2008). J. Appl. Crystallogr. 41, 466. https://doi.org/10.1107/S0021889807067908.

    Article  ADS  CAS  Google Scholar 

  24. W. T. Pennington (1999). J. Appl. Crystallogr. 32, 1028. https://doi.org/10.1107/S0021889899011486.

    Article  ADS  CAS  Google Scholar 

  25. M. A. Spackman and J. J. McKinnon (2002). CrystEngComm 4, 378. https://doi.org/10.1039/B203191B.

    Article  CAS  Google Scholar 

  26. P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, and M. A. Spackman (2021). J. Appl. Crystallogr. 54, 1006. https://doi.org/10.1107/S1600576721002910.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. M. A. Spackman and D. Jayatilaka (2009). CrystEngCommun 11, 19. https://doi.org/10.1039/B818330A.

    Article  CAS  Google Scholar 

  28. R. Ayadi, J. Lhoste, I. L. Rak, T. Mhiri, and M. Boujelbene (2017). J. Saudi Chem. Soc. 21, 869. https://doi.org/10.1016/j.jscs.2017.05.001.

    Article  CAS  Google Scholar 

  29. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, and G. A. Petersson, in (2009).

  30. A. D. Becke (1996). J. Chem. Phys. 104, 1040. https://doi.org/10.1063/1.470829.

    Article  ADS  CAS  Google Scholar 

  31. C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785. https://doi.org/10.1103/physrevb.37.785.

    Article  ADS  CAS  Google Scholar 

  32. R. G. Parr and Y. Weitao, Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1994).

    Google Scholar 

  33. H. Triki, B. Nagy, J. Overgaard, F. Jensen, and S. Kamoun (2020). Struct Chem 31, 103–114. https://doi.org/10.1007/s11224-019-01380-3.

    Article  CAS  Google Scholar 

  34. S. Chiodo, N. Russo, and E. Sicilia (2006). J. Chem. Phys. 125. https://doi.org/10.1063/1.2345197.

    Article  ADS  CAS  PubMed  Google Scholar 

  35. V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, and L. A. Curtiss (2001). J. Comput. Chem. 22, 976. https://doi.org/10.1002/jcc.1058.

    Article  CAS  Google Scholar 

  36. T. Dennington, T. Keith, and J. Millam J (2009). Semichem Inc., Shawnee Mission.-References-Scientific Research Publishing.

  37. M. H. Jamróz (2013). Spectrochim Acta A 114, 220–230. https://doi.org/10.1016/j.saa.2013.05.096.

    Article  ADS  CAS  Google Scholar 

  38. D. Michalska, RAINT Program (Wroclaw Univ Technol, London, 2003).

    Google Scholar 

  39. L. Pauling (1931). J. Am. Chem. Soc. 53, 1367. https://doi.org/10.1021/ja01355a027.

    Article  CAS  Google Scholar 

  40. I. D. Brown and D. Altermatt (1985). Acta Crystallogr. Sect. B 41, 244. https://doi.org/10.1107/S0108768185002063.

    Article  ADS  Google Scholar 

  41. A. Ertl, J. M. Hughes, F. Pertlik, F. F. Foit Jr., S. E. Wright, F. Brandstätter, and B. Marler (2002). Can. Mineral. 40, 153. https://doi.org/10.2113/gscanmin.40.1.153.

    Article  CAS  Google Scholar 

  42. I. Tlili, R. Essalhi, G. Mousdi, M. S. M. Abdelbaky, and S. Chaabouni (2022). J. Mol. Struct. 1251. https://doi.org/10.1016/j.molstruc.2021.132012.

    Article  CAS  Google Scholar 

  43. H. Khili, N. Chaari, M. Fliyou, A. Koumina, and S. Chaabouni (2012). Polyhedron 36, 30. https://doi.org/10.1016/j.poly.2012.01.016.

    Article  CAS  Google Scholar 

  44. J. P. Merrick, D. Moran, and L. Radom (2007). J. Phys. Chem. A 111, 11683. https://doi.org/10.1021/jp073974n.

    Article  CAS  PubMed  Google Scholar 

  45. S. Muthu and E. E. Porchelvi (2013). Spectrochim. Acta. A 115, 275. https://doi.org/10.1016/j.saa.2013.06.011.

    Article  ADS  CAS  Google Scholar 

  46. A. Vogler, A. Paukner, and H. Kunkely (1990). Coord. Chem. Rev. 97, 285. https://doi.org/10.1016/0010-8545(90)80096-C.

    Article  CAS  Google Scholar 

  47. A. B. Ahmed, H. Feki, and Y. Abid (2014). Spectrochim. Acta. A 133, 357. https://doi.org/10.1016/j.saa.2014.05.073.

    Article  ADS  CAS  Google Scholar 

  48. N. Rajeswari, R. Santhakumari, S. Mugeshini, D. Chandrika, and S. Sagadevan (2021). Chin. J. Phys. 73, 746. https://doi.org/10.1016/j.cjph.2021.08.010.

    Article  CAS  Google Scholar 

  49. R. Kaliammal, G. Parvathy, G. Ravi, V. M. Kumar, M. K. Kumar, and S. Sudhahar (2022). J. Mater. Sci. Mater. Electron. 33, 4598. https://doi.org/10.1007/s10854-021-07650-3.

    Article  CAS  Google Scholar 

  50. K. Kahouli, A. Kahouli, K. Khirouni, and S. Chaabouni (2020). J. Mol. Struct. 1199, 126944. https://doi.org/10.1016/j.molstruc.2019.126944.

    Article  CAS  Google Scholar 

  51. S. Hajlaoui, I. Chaabane, A. Oueslati, and K. Guidara (2015). Phys. B 474, 90. https://doi.org/10.1016/j.physb.2015.06.008.

    Article  ADS  CAS  Google Scholar 

  52. N. Moutia, M. B. Gzaiel, A. Oueslati, and K. Khirouni (2017). J. Mol. Struct. 1134, 697. https://doi.org/10.1016/j.molstruc.2017.01.009.

    Article  ADS  CAS  Google Scholar 

  53. K. Karoui, A. B. Rhaiem, and K. Guidara (2011). Ionics 17, 517. https://doi.org/10.1007/s11581-011-0546-2.

    Article  CAS  Google Scholar 

  54. M. Amghar, A. Bougoffa, A. Trabelsi, A. Oueslati, and E. Dhahri (2022). RSC Adv. 12, 15848. https://doi.org/10.1039/D2RA01800D.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. A. D. Jeidd, A. Bougoffa, A. Benali, A. Trabelsi, E. Dhahri, K. Khirouni, and B. F. O. Costa (2023). Ionics 29, 603. https://doi.org/10.1007/s11581-022-04838-3.

    Article  CAS  Google Scholar 

  56. M. Amghar, A. Bougoffa, A. Trabelsi, A. Oueslati, and E. Dhahri (2022). RSC Adv. 12, 20348. https://doi.org/10.1039/D2RA02555H.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. A. Oueslati, F. Hlel, K. Guidara, and M. Gargouri (2010). J. Alloys Compd. 492, 508. https://doi.org/10.1016/j.jallcom.2009.11.152.

    Article  CAS  Google Scholar 

  58. W. Trigui, A. Oueslati, I. Chaabane, and F. Hlel (2014). Ionics 20, 231. https://doi.org/10.1007/s11581-013-0972-4.

    Article  CAS  Google Scholar 

  59. H. Nyquist (1932). Bell Syst. Tech. J. 11, 126. https://doi.org/10.1002/j.1538-7305.1932.tb02344.x.

    Article  Google Scholar 

  60. F. B. Abdallah, A. Benali, M. Triki, E. Dhahri, M. P. F. Graça, and M. A. Valente (2018). Superlattices Microstruct. 117, 260. https://doi.org/10.1016/j.spmi.2018.03.048.

    Article  ADS  CAS  Google Scholar 

  61. S. Nasri, A. Oueslati, I. Chaabane, and M. Gargouri (2016). Ceram. Int. 42, 14041. https://doi.org/10.1016/j.ceramint.2016.06.011.

    Article  CAS  Google Scholar 

  62. M. Jebli, C. Rayssi, J. Dhahri, M. B. Henda, H. Belmabrouk, and A. Bajahzar (2021). RSC Adv. 11, 23664. https://doi.org/10.1039/D1RA01763B.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. S. Gharbi, R. Dhahri, M. Rasheed, E. Dhahri, R. Barille, M. Rguiti, A. Tozri, and M. R. Berber (2021). Mater. Sci. Eng. B 270. https://doi.org/10.1016/j.mseb.2021.115191.

    Article  CAS  Google Scholar 

  64. I. Soudani, K. B. Brahim, A. Oueslati, H. Slimi, A. Aydi, and K. Khirouni (2022). RSC Adv. 12, 18697. https://doi.org/10.1039/D2RA02757G.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. R. Hamdi, A. Tozri, M. Smari, E. Dhahri, and L. Bessais (2017). Mater. Res. Bull. 95, 525. https://doi.org/10.1016/j.materresbull.2017.08.035.

    Article  CAS  Google Scholar 

  66. H. Chouaya, M. Smari, I. Walha, E. Dhahri, M. P. F. Graça, and M. A. Valente (2018). J. Magn. Magn. Mater. 451, 344. https://doi.org/10.1016/j.jmmm.2017.11.068.

    Article  ADS  CAS  Google Scholar 

  67. V. Y. Zerov, V. G. Malyarov, I. A. Khrebtov, Y. V. Kulikov, I. I. Shaganov, and A. D. Smirnov (2001). J. Opt. Technol. 68, 428. https://doi.org/10.1364/JOT.68.000428.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

The Minister of Superior Education and Research of Tunisia and Spanish Ministerio de Ciencia e Innovación (PID2020-113558RB-C41) and and Gobierno del Principado de Asturias (GRUPIN-2021/50997) are acknowledged. The authors are sincerely grateful to Jawaher Zekri, an English teacher at the faculty of sciences within Sfax university for her insightful recommendations and painstaking efforts to connect the manuscript, improve its quality and polish its language.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript

Author information

Authors and Affiliations

Authors

Contributions

IT: performed the experiments, writing the manuscript and analyzed the data (analysis and interpretation). HT: carried out the theoretical calculation (DFT Calculation). AO: performed The electrical measurements. MSMA, GM: verified the analytical methods and supervised the findings of this work. SGG, SC: performed the critical revision.

Corresponding authors

Correspondence to Imen Tlili or Mohammed S. M. Abdelbaky.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 kb)

Supplementary file2 (CIF 1055 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tlili, I., Triki, H., Abdelbaky, M.S.M. et al. Structural Investigation, Spectroscopic Properties, DFT Calculations and Electrical Properties of [C6H9N2]2 Sb2Cl8 Hybrid Compound. J Clust Sci (2024). https://doi.org/10.1007/s10876-024-02545-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10876-024-02545-9

Keywords

Navigation