Skip to main content

Advertisement

Log in

Targeting EphA2: a promising strategy to overcome chemoresistance and drug resistance in cancer

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Erythropoietin-producing hepatocellular A2 (EphA2) is a vital member of the Eph tyrosine kinase receptor family and has been associated with developmental processes. However, it is often overexpressed in tumors and correlates with cancer progression and worse prognosis due to the activation of its noncanonical signaling pathway. Throughout cancer treatment, the emergence of drug-resistant tumor cells is relatively common. Since the early 2000s, researchers have focused on understanding the role of EphA2 in promoting drug resistance in different types of cancer, as well as finding efficient and secure EphA2 inhibitors. In this review, the current knowledge regarding induced resistance by EphA2 in cancer treatment is summarized, and the types of cancer that lead to the most cancer-related deaths are highlighted. Some EphA2 inhibitors were also investigated. Regardless of whether the cancer treatment has reached a drug-resistance stage in EphA2-overexpressing tumors, once EphA2 is involved in cancer progression and aggressiveness, targeting EphA2 is a promising therapeutic strategy, especially in combination with other target-drugs for synergistic effect. For that reason, monoclonal antibodies against EphA2 and inhibitors of this receptor should be investigated for efficacy and drug toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Ferlay J, Colombet M, Soerjomataram I et al (2021) Cancer statistics for the year 2020: an overview. Int J cancer. https://doi.org/10.1002/ijc.33588

    Article  PubMed  Google Scholar 

  2. Desai A, Scheckel C, Jensen CJ et al (2022) Trends in prices of drugs used to treat metastatic non-small cell lung cancer in the US from 2015 to 2020. JAMA Netw open 5:e2144923. https://doi.org/10.1001/jamanetworkopen.2021.44923

    Article  PubMed  PubMed Central  Google Scholar 

  3. Peng L, Wang Z, Stebbing J, Yu Z (2022) Novel immunotherapeutic drugs for the treatment of lung cancer. Curr Opin Oncol 34:89–94. https://doi.org/10.1097/CCO.0000000000000800

    Article  CAS  PubMed  Google Scholar 

  4. Xu M, Peng R, Min Q et al (2022) Bisindole natural products: a vital source for the development of new anticancer drugs. Eur J Med Chem 243:114748. https://doi.org/10.1016/j.ejmech.2022.114748

    Article  CAS  PubMed  Google Scholar 

  5. Zigrossi A, Hong LK, Ekyalongo RC et al (2022) SELENOF is a new tumor suppressor in breast cancer. Oncogene 41:1263–1268. https://doi.org/10.1038/s41388-021-02158-w

    Article  CAS  PubMed  Google Scholar 

  6. Szostakowska M, Trębińska-Stryjewska A, Grzybowska EA, Fabisiewicz A (2019) Resistance to endocrine therapy in breast cancer: molecular mechanisms and future goals. Breast Cancer Res Treat 173:489–497. https://doi.org/10.1007/s10549-018-5023-4

    Article  PubMed  Google Scholar 

  7. Bukowski K, Kciuk M, Kontek R (2020) Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. https://doi.org/10.3390/ijms21093233

    Article  PubMed  PubMed Central  Google Scholar 

  8. Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature 500:415–421. https://doi.org/10.1038/nature12477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu C, Guan X, Zhang X et al (2022) Targeting KRAS mutant cancers: from druggable therapy to drug resistance. Mol Cancer 21:159. https://doi.org/10.1186/s12943-022-01629-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vachtenheim J, Ondrušová L (2021) Many distinct ways lead to drug resistance in BRAF- and NRAS-mutated melanomas. Life (Basel, Switzerland). https://doi.org/10.3390/life11050424

    Article  PubMed  Google Scholar 

  11. Li Q-H, Wang Y-Z, Tu J et al (2020) Anti-EGFR therapy in metastatic colorectal cancer: mechanisms and potential regimens of drug resistance. Gastroenterol Rep 8:179–191. https://doi.org/10.1093/gastro/goaa026

    Article  Google Scholar 

  12. Nussinov R, Tsai C-J, Jang H (2021) Anticancer drug resistance: an update and perspective. Drug Resist Updat Rev Comment Antimicrob Anticancer Chemother 59:100796. https://doi.org/10.1016/j.drup.2021.100796

    Article  CAS  Google Scholar 

  13. Kinch MS, Moore M-B, Harpole DHJ (2003) Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival. Clin cancer Res an Off J Am Assoc Cancer Res 9:613–618

    CAS  Google Scholar 

  14. Garcia-Monclús S, López-Alemany R, Almacellas-Rabaiget O et al (2018) EphA2 receptor is a key player in the metastatic onset of Ewing sarcoma. Int J Cancer 143:1188–1201. https://doi.org/10.1002/ijc.31405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hirai H, Maru Y, Hagiwara K et al (1987) A novel putative tyrosine kinase receptor encoded by the EPH gene. Science 238:1717–1720. https://doi.org/10.1126/science.2825356

    Article  CAS  PubMed  Google Scholar 

  16. Pasquale EB (2010) Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 10:165–180. https://doi.org/10.1038/nrc2806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sahoo AR, Buck M (2021) Structural and functional insights into the transmembrane domain association of Eph receptors. Int J Mol Sci. https://doi.org/10.3390/ijms22168593

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liang LY, Patel O, Janes PW et al (2019) Eph receptor signalling: from catalytic to non-catalytic functions. Oncogene 38:6567–6584. https://doi.org/10.1038/s41388-019-0931-2

    Article  CAS  PubMed  Google Scholar 

  19. Himanen JP, Rajashankar KR, Lackmann M et al (2001) Crystal structure of an Eph receptor-ephrin complex. Nature 414:933–938. https://doi.org/10.1038/414933a

    Article  CAS  PubMed  Google Scholar 

  20. Ellis C, Kasmi F, Ganju P et al (1996) A juxtamembrane autophosphorylation site in the Eph family receptor tyrosine kinase, Sek, mediates high affinity interaction with p59fyn. Oncogene 12:1727–1736

    CAS  PubMed  Google Scholar 

  21. Holland SJ, Gale NW, Gish GD et al (1997) Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO J 16:3877–3888. https://doi.org/10.1093/emboj/16.13.3877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schultz J, Ponting CP, Hofmann K, Bork P (1997) SAM as a protein interaction domain involved in developmental regulation. Protein Sci 6:249–253. https://doi.org/10.1002/pro.5560060128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stapleton D, Balan I, Pawson T, Sicheri F (1999) The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nat Struct Biol 6:44–49. https://doi.org/10.1038/4917

    Article  CAS  PubMed  Google Scholar 

  24. Thanos CD, Goodwill KE, Bowie JU (1999) Oligomeric structure of the human EphB2 receptor SAM domain. Science 283:833–836. https://doi.org/10.1126/science.283.5403.833

    Article  CAS  PubMed  Google Scholar 

  25. Hock B, Böhme B, Karn T et al (1998) PDZ-domain-mediated interaction of the Eph-related receptor tyrosine kinase EphB3 and the RAS-binding protein AF6 depends on the kinase activity of the receptor. Proc Natl Acad Sci USA 95:9779–9784. https://doi.org/10.1073/pnas.95.17.9779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Torres R, Firestein BL, Dong H et al (1998) PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands. Neuron 21:1453–1463. https://doi.org/10.1016/s0896-6273(00)80663-7

    Article  CAS  PubMed  Google Scholar 

  27. Gong J, Körner R, Gaitanos L, Klein R (2016) Exosomes mediate cell contact-independent ephrin-Eph signaling during axon guidance. J Cell Biol 214:35–44. https://doi.org/10.1083/jcb.201601085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pasquale EB (2016) Exosomes expand the sphere of influence of Eph receptors and ephrins. J Cell Biol 214:5–7. https://doi.org/10.1083/jcb.201606074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oricchio E, Nanjangud G, Wolfe AL et al (2011) The Eph-receptor A7 is a soluble tumor suppressor for follicular lymphoma. Cell 147:554–564. https://doi.org/10.1016/j.cell.2011.09.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee J, Nakajima-Koyama M, Sone M et al (2015) Secreted ephrin receptor A7 promotes somatic cell reprogramming by inducing ERK activity reduction. Stem Cell Rep 5:480–489. https://doi.org/10.1016/j.stemcr.2015.09.001

    Article  CAS  Google Scholar 

  31. Sato S, Vasaikar S, Eskaros A et al (2019) EPHB2 carried on small extracellular vesicles induces tumor angiogenesis via activation of ephrin reverse signaling. JCI Insight. https://doi.org/10.1172/jci.insight.132447

    Article  PubMed  PubMed Central  Google Scholar 

  32. Aasheim HC, Munthe E, Funderud S et al (2000) A splice variant of human ephrin-A4 encodes a soluble molecule that is secreted by activated human B lymphocytes. Blood 95:221–230. https://doi.org/10.1182/blood.v95.1.221.001k01_221_230

    Article  CAS  PubMed  Google Scholar 

  33. Wykosky J, Palma E, Gibo DM et al (2008) Soluble monomeric EphrinA1 is released from tumor cells and is a functional ligand for the EphA2 receptor. Oncogene 27:7260–7273. https://doi.org/10.1038/onc.2008.328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alford S, Watson-Hurthig A, Scott N et al (2010) Soluble ephrin a1 is necessary for the growth of HeLa and SK-BR3 cells. Cancer Cell Int 10:1–13. https://doi.org/10.1186/1475-2867-10-41

    Article  CAS  Google Scholar 

  35. Cui XD, Lee MJ, Yu GR et al (2010) EFNA1 ligand and its receptor EphA2: potential biomarkers for hepatocellular carcinoma. Int J Cancer 126:940–949. https://doi.org/10.1002/ijc.24798

    Article  CAS  PubMed  Google Scholar 

  36. Lee PC, Chen ST, Kuo TC et al (2020) C1GALT1 is associated with poor survival and promotes soluble Ephrin A1-mediated cell migration through activation of EPHA2 in gastric cancer. Oncogene 39:2724–2740. https://doi.org/10.1038/s41388-020-1178-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Neill T, Goyal A, Buraschi S et al (2016) EphA2 is a functional receptor for the growth factor progranulin. J Cell Biol 215:687–703. https://doi.org/10.1083/jcb.201603079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Janes PW, Griesshaber B, Atapattu L et al (2011) Eph receptor function is modulated by heterooligomerization of A and B type Eph receptors. J Cell Biol 195:1033–1045. https://doi.org/10.1083/jcb.201104037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wimmer-Kleikamp SH, Janes PW, Squire A et al (2004) Recruitment of Eph receptors into signaling clusters does not require ephrin contact. J Cell Biol 164:661–666. https://doi.org/10.1083/jcb.200312001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miao H, Li DQ, Mukherjee A et al (2009) EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell 16:9–20. https://doi.org/10.1016/j.ccr.2009.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hiramoto-Yamaki N, Takeuchi S, Ueda S et al (2010) Ephexin4 and EphA2 mediate cell migration through a RhoG-dependent mechanism. J Cell Biol 190:461–477. https://doi.org/10.1083/jcb.201005141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sato S, Vasaikar S, Eskaros A et al (2019) EPHB2 carried on small extracellular vesicles induces tumor angiogenesis via activation of ephrin reverse signaling. JCI Insight 4:1–18. https://doi.org/10.1172/jci.insight.132447

    Article  Google Scholar 

  43. Gao Z, Han X, Zhu Y et al (2021) Drug-resistant cancer cell-derived exosomal EphA2 promotes breast cancer metastasis via the EphA2-Ephrin A1 reverse signaling. Cell Death Dis. https://doi.org/10.1038/s41419-021-03692-x

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vreeken D, Bruikman CS, Cox SML et al (2020) EPH receptor B2 stimulates human monocyte adhesion and migration independently of its EphrinB ligands. J Leukoc Biol 108:999–1011. https://doi.org/10.1002/JLB.2A0320-283RR

    Article  CAS  PubMed  Google Scholar 

  45. Fujii H, Tatsumi K, Kosaka K et al (2006) Eph-ephrin A system regulates murine blastocyst attachment and spreading. Dev Dyn an Off Publ Am Assoc Anat 235:3250–3258. https://doi.org/10.1002/dvdy.20977

    Article  CAS  Google Scholar 

  46. N’Tumba-Byn T, Yamada M, Seandel M (2020) Loss of tyrosine kinase receptor Ephb2 impairs proliferation and stem cell activity of spermatogonia in culture†. Biol Reprod 102:950–962. https://doi.org/10.1093/biolre/ioz222

    Article  PubMed  Google Scholar 

  47. Wang Z, Miura N, Bonelli A et al (2002) Receptor tyrosine kinase, EphB4 (HTK), accelerates differentiation of select human hematopoietic cells. Blood 99:2740–2747. https://doi.org/10.1182/blood.v99.8.2740

    Article  CAS  PubMed  Google Scholar 

  48. Ethell IM, Irie F, Kalo MS et al (2001) EphB/syndecan-2 signaling in dendritic spine morphogenesis. Neuron 31:1001–1013. https://doi.org/10.1016/s0896-6273(01)00440-8

    Article  CAS  PubMed  Google Scholar 

  49. Henkemeyer M, Itkis OS, Ngo M et al (2003) Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J Cell Biol 163:1313–1326. https://doi.org/10.1083/jcb.200306033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Penzes P, Beeser A, Chernoff J et al (2003) Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron 37:263–274. https://doi.org/10.1016/s0896-6273(02)01168-6

    Article  CAS  PubMed  Google Scholar 

  51. Murai KK, Nguyen LN, Irie F et al (2003) Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci 6:153–160. https://doi.org/10.1038/nn994

    Article  CAS  PubMed  Google Scholar 

  52. Buensuceso AV, Deroo BJ (2013) The ephrin signaling pathway regulates morphology and adhesion of mouse granulosa cells in vitro. Biol Reprod 88:25. https://doi.org/10.1095/biolreprod.112.100123

    Article  CAS  PubMed  Google Scholar 

  53. Fujii H, Fujiwara H, Horie A et al (2011) Ephrin A1 induces intercellular dissociation in Ishikawa cells: possible implication of the Eph-ephrin A system in human embryo implantation. Hum Reprod 26:299–306. https://doi.org/10.1093/humrep/deq340

    Article  CAS  PubMed  Google Scholar 

  54. Wu B, Rockel JS, Lagares D, Kapoor M (2019) Ephrins and Eph receptor signaling in tissue repair and fibrosis. Curr Rheumatol Rep 21:23. https://doi.org/10.1007/s11926-019-0825-x

    Article  PubMed  PubMed Central  Google Scholar 

  55. Darling TK, Lamb TJ (2019) Emerging roles for Eph receptors and ephrin ligands in immunity. Front Immunol 10:1473. https://doi.org/10.3389/fimmu.2019.01473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vivanti A, Ozanne A, Grondin C et al (2018) Loss of function mutations in EPHB4 are responsible for vein of Galen aneurysmal malformation. Brain 141:979–988. https://doi.org/10.1093/brain/awy020

    Article  PubMed  Google Scholar 

  57. Chen D, Hughes ED, Saunders TL et al (2022) Angiogenesis depends upon EPHB4-mediated export of collagen IV from vascular endothelial cells. JCI Insight. https://doi.org/10.1172/jci.insight.156928

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gerety SS, Wang HU, Chen ZF, Anderson DJ (1999) Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell 4:403–414. https://doi.org/10.1016/s1097-2765(00)80342-1

    Article  CAS  PubMed  Google Scholar 

  59. Li J, Dong W, Gao X et al (2021) EphA4 is highly expressed in the atria of heart and its deletion leads to atrial hypertrophy and electrocardiographic abnormalities in rats. Life Sci 278:119595. https://doi.org/10.1016/j.lfs.2021.119595

    Article  CAS  PubMed  Google Scholar 

  60. Lindberg RA, Hunter T (1990) cDNA cloning and characterization of eck, an epithelial cell receptor protein-tyrosine kinase in the Eph/elk family of protein kinases. Mol Cell Biol 10:6316–6324. https://doi.org/10.1128/mcb.10.12.6316-6324.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sulman EP, Tang XX, Allen C et al (1997) ECK, a human EPH-related gene, maps to 1p36.1, a common region of alteration in human cancers. Genomics 40:371–374. https://doi.org/10.1006/geno.1996.4569

    Article  CAS  PubMed  Google Scholar 

  62. Dai D, Huang Q, Nussinov R, Ma B (2014) Promiscuous and specific recognition among ephrins and Eph receptors. Biochim Biophys Acta 1844:1729–1740. https://doi.org/10.1016/j.bbapap.2014.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Himanen JP, Goldgur Y, Miao H et al (2009) Ligand recognition by A-class Eph receptors: crystal structures of the EphA2 ligand-binding domain and the EphA2/ephrin-A1 complex. EMBO Rep 10:722–728. https://doi.org/10.1038/embor.2009.91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Seiradake E, Schaupp A, del Toro RD et al (2013) Structurally encoded intraclass differences in EphA clusters drive distinct cell responses. Nat Struct Mol Biol 20:958–964. https://doi.org/10.1038/nsmb.2617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shi Y, De Maria A, Bennett T et al (2012) A role for epha2 in cell migration and refractive organization of the ocular lens. Invest Ophthalmol Vis Sci 53:551–559. https://doi.org/10.1167/iovs.11-8568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cheng C, Ansari MM, Cooper JA, Gong X (2013) EphA2 and Src regulate equatorial cell morphogenesis during lens development. Development 140:4237–4245. https://doi.org/10.1242/dev.100727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Irie N, Takada Y, Watanabe Y et al (2009) Bidirectional signaling through ephrinA2-EphA2 enhances osteoclastogenesis and suppresses osteoblastogenesis. J Biol Chem 284:14637–14644. https://doi.org/10.1074/jbc.M807598200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vaught D, Chen J, Brantley-Sieders DM (2009) Regulation of mammary gland branching morphogenesis by EphA2 receptor tyrosine kinase. Mol Biol Cell 20:2572–2581. https://doi.org/10.1091/mbc.e08-04-0378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Walker-Daniels J, Coffman K, Azimi M et al (1999) Overexpression of the EphA2 tyrosine kinase in prostate cancer. Prostate 41:275–280. https://doi.org/10.1002/(sici)1097-0045(19991201)41:4%3c275::aid-pros8%3e3.0.co;2-t

    Article  CAS  PubMed  Google Scholar 

  70. Ogawa K, Pasqualini R, Lindberg RA et al (2000) The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene 19:6043–6052. https://doi.org/10.1038/sj.onc.1204004

    Article  CAS  PubMed  Google Scholar 

  71. Saito T, Masuda N, Miyazaki T et al (2004) Expression of EphA2 and E-cadherin in colorectal cancer: correlation with cancer metastasis. Oncol Rep 11:605–611. https://doi.org/10.3892/or.11.3.605

    Article  CAS  PubMed  Google Scholar 

  72. Lin YG, Han LY, Kamat AA et al (2007) EphA2 overexpression is associated with angiogenesis in ovarian cancer. Cancer 109:332–340. https://doi.org/10.1002/cncr.22415

    Article  CAS  PubMed  Google Scholar 

  73. Song W, Hwang Y, Youngblood VM et al (2017) Targeting EphA2 impairs cell cycle progression and growth of basal-like/triple-negative breast cancers. Oncogene 36:5620–5630. https://doi.org/10.1038/onc.2017.170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dunne PD, Dasgupta S, Blayney JK et al (2016) EphA2 expression is a key driver of migration and invasion and a poor prognostic marker in colorectal cancer. Clin Cancer Res 22:230–242. https://doi.org/10.1158/1078-0432.CCR-15-0603

    Article  CAS  PubMed  Google Scholar 

  75. Li J-Y, Xiao T, Yi H-M et al (2019) S897 phosphorylation of EphA2 is indispensable for EphA2-dependent nasopharyngeal carcinoma cell invasion, metastasis and stem properties. Cancer Lett 444:162–174. https://doi.org/10.1016/j.canlet.2018.12.011

    Article  CAS  PubMed  Google Scholar 

  76. Sachdeva A, Hart CA, Kim K et al (2022) Non-canonical EphA2 activation underpins PTEN-mediated metastatic migration and poor clinical outcome in prostate cancer. Br J Cancer. https://doi.org/10.1038/s41416-022-01914-3

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhuang G, Brantley-Sieders DM, Vaught D et al (2010) Elevation of receptor tyrosine kinase EphA2 mediates resistance to trastuzumab therapy. Cancer Res 70:299–308. https://doi.org/10.1158/0008-5472.CAN-09-1845

    Article  CAS  PubMed  Google Scholar 

  78. Ishigaki H, Minami T, Morimura O et al (2019) EphA2 inhibition suppresses proliferation of small-cell lung cancer cells through inducing cell cycle arrest. Biochem Biophys Res Commun 519:846–853. https://doi.org/10.1016/j.bbrc.2019.09.076

    Article  CAS  PubMed  Google Scholar 

  79. Yeddula N, Xia Y, Ke E et al (2015) Screening for tumor suppressors: loss of ephrin receptor A2 cooperates with oncogenic KRas in promoting lung adenocarcinoma. Proc Natl Acad Sci USA 112:E6476–E6485. https://doi.org/10.1073/pnas.1520110112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Han B, Zhang H, Tian R et al (2022) Exosomal EPHA2 derived from highly metastatic breast cancer cells promotes angiogenesis by activating the AMPK signaling pathway through ephrin A1-EPHA2 forward signaling. Theranostics 12:4127–4146. https://doi.org/10.7150/THNO.72404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Miao H, Wei BR, Peehl DM et al (2001) Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway. Nat Cell Biol 3:527–530. https://doi.org/10.1038/35074604

    Article  CAS  PubMed  Google Scholar 

  82. Guo H, Miao H, Gerber L et al (2006) Disruption of EphA2 receptor tyrosine kinase leads to increased susceptibility to carcinogenesis in mouse skin. Cancer Res 66:7050–7058. https://doi.org/10.1158/0008-5472.CAN-06-0004

    Article  CAS  PubMed  Google Scholar 

  83. Walker-Daniels J, Riese DJ 2nd, Kinch MS (2002) c-Cbl-dependent EphA2 protein degradation is induced by ligand binding. Mol Cancer Res 1:79–87

    CAS  PubMed  Google Scholar 

  84. Zhou Y, Yamada N, Tanaka T et al (2015) Crucial roles of RSK in cell motility by catalysing serine phosphorylation of EphA2. Nat Commun 6:7679. https://doi.org/10.1038/ncomms8679

    Article  PubMed  Google Scholar 

  85. Barquilla A, Lamberto I, Noberini R et al (2016) Protein kinase A can block EphA2 receptor-mediated cell repulsion by increasing EphA2 S897 phosphorylation. Mol Biol Cell 27:2757–2770. https://doi.org/10.1091/mbc.E16-01-0048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wilson K, Shiuan E, Brantley-Sieders DM (2021) Oncogenic functions and therapeutic targeting of EphA2 in cancer. Oncogene 40:2483–2495. https://doi.org/10.1038/s41388-021-01714-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Buraschi S, Neill T, Xu S-Q et al (2020) Progranulin/EphA2 axis: a novel oncogenic mechanism in bladder cancer. Matrix Biol 93:10–24. https://doi.org/10.1016/j.matbio.2020.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Larsen AB, Pedersen MW, Stockhausen M-T et al (2007) Activation of the EGFR gene target EphA2 inhibits epidermal growth factor-induced cancer cell motility. Mol Cancer Res 5:283–293. https://doi.org/10.1158/1541-7786.MCR-06-0321

    Article  CAS  PubMed  Google Scholar 

  89. Brantley-Sieders DM, Zhuang G, Hicks D et al (2008) The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma tumorigenesis and metastatic progression in mice by amplifying ErbB2 signaling. J Clin Invest 118:64–78. https://doi.org/10.1172/JCI33154

    Article  CAS  PubMed  Google Scholar 

  90. Kim J, Chang I-Y, You HJ (2022) Interactions between EGFR and EphA2 promote tumorigenesis through the action of Ephexin1. Cell Death Dis 13:528. https://doi.org/10.1038/s41419-022-04984-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Feng J, Lu S-S, Xiao T et al (2020) ANXA1 binds and stabilizes EphA2 to promote nasopharyngeal carcinoma growth and metastasis. Cancer Res 80:4386–4398. https://doi.org/10.1158/0008-5472.CAN-20-0560

    Article  CAS  PubMed  Google Scholar 

  92. Lu M, Miller KD, Gokmen-Polar Y et al (2003) EphA2 overexpression decreases estrogen dependence and tamoxifen sensitivity. Cancer Res 63:3425–3429

    CAS  PubMed  Google Scholar 

  93. Amato KR, Wang S, Tan L et al (2016) EPHA2 blockade overcomes acquired resistance to EGFR kinase inhibitors in lung cancer. Cancer Res 76:305–318. https://doi.org/10.1158/0008-5472.CAN-15-0717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yao F, Huang X, Xie Z et al (2022) LINC02418 upregulates EPHA2 by competitively sponging miR-372-3p to promote 5-Fu/DDP chemoresistance in colorectal cancer. Carcinogenesis. https://doi.org/10.1093/carcin/bgac065

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cuyàs E, Queralt B, Martin-Castillo B et al (2017) EphA2 receptor activation with ephrin-A1 ligand restores cetuximab efficacy in NRAS-mutant colorectal cancer cells. Oncol Rep 38:263–270. https://doi.org/10.3892/or.2017.5682

    Article  CAS  PubMed  Google Scholar 

  96. De Robertis M, Loiacono L, Fusilli C et al (2017) Dysregulation of EGFR pathway in EphA2 cell subpopulation significantly associates with poor prognosis in colorectal cancer. Clin Cancer Res 23:159–170. https://doi.org/10.1158/1078-0432.CCR-16-0709

    Article  CAS  PubMed  Google Scholar 

  97. Martini G, Cardone C, Vitiello PP et al (2019) EPHA2 is a predictive biomarker of resistance and a potential therapeutic target for improving antiepidermal growth factor receptor therapy in colorectal cancer. Mol Cancer Ther 18:845–855. https://doi.org/10.1158/1535-7163.MCT-18-0539

    Article  CAS  PubMed  Google Scholar 

  98. Chen C-T, Liao L-Z, Lu C-H et al (2020) Quantitative phosphoproteomic analysis identifies the potential therapeutic target EphA2 for overcoming sorafenib resistance in hepatocellular carcinoma cells. Exp Mol Med 52:497–513. https://doi.org/10.1038/s12276-020-0404-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen Z, Liu Z, Zhang M et al (2019) EPHA2 blockade reverses acquired resistance to afatinib induced by EPHA2-mediated MAPK pathway activation in gastric cancer cells and avatar mice. Int J Cancer 145:2440–2449. https://doi.org/10.1002/ijc.32313

    Article  CAS  PubMed  Google Scholar 

  100. Gökmen-Polar Y, Toroni RA, Hocevar BA et al (2011) Dual targeting of EphA2 and ER restores tamoxifen sensitivity in ER/EphA2-positive breast cancer. Breast Cancer Res Treat 127:375–384. https://doi.org/10.1007/s10549-010-1004-y

    Article  CAS  PubMed  Google Scholar 

  101. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  102. Weinstein IB, Joe AK (2006) Mechanisms of disease: oncogene addiction–a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol 3:448–457. https://doi.org/10.1038/ncponc0558

    Article  CAS  PubMed  Google Scholar 

  103. Skoulidis F, Heymach JV (2019) Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat Rev Cancer 19:495–509. https://doi.org/10.1038/s41568-019-0179-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Amato KR, Wang S, Hastings AK et al (2014) Genetic and pharmacologic inhibition of EPHA2 promotes apoptosis in NSCLC. J Clin Invest 124:2037–2049. https://doi.org/10.1172/JCI72522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Koch H, Busto MEDC, Kramer K et al (2015) Chemical proteomics uncovers EPHA2 as a mechanism of acquired resistance to small molecule EGFR kinase inhibition. J Proteome Res 14:2617–2625. https://doi.org/10.1021/acs.jproteome.5b00161

    Article  CAS  PubMed  Google Scholar 

  106. Camidge DR, Pao W, Sequist LV (2014) Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat Rev Clin Oncol 11:473–481. https://doi.org/10.1038/nrclinonc.2014.104

    Article  CAS  PubMed  Google Scholar 

  107. Brannan JM, Sen B, Saigal B et al (2009) EphA2 in the early pathogenesis and progression of non-small cell lung cancer. Cancer Prev Res (Phila) 2:1039–1049. https://doi.org/10.1158/1940-6207.CAPR-09-0212

    Article  CAS  PubMed  Google Scholar 

  108. Larsen AB, Stockhausen M-T, Poulsen HS (2010) Cell adhesion and EGFR activation regulate EphA2 expression in cancer. Cell Signal 22:636–644. https://doi.org/10.1016/j.cellsig.2009.11.018

    Article  CAS  PubMed  Google Scholar 

  109. Volz C, Breid S, Selenz C et al (2020) Inhibition of tumor VEGFR2 induces serine 897 EphA2-dependent tumor cell invasion and metastasis in NSCLC. Cell Rep 31:107568. https://doi.org/10.1016/j.celrep.2020.107568

    Article  CAS  PubMed  Google Scholar 

  110. Gong S, Li Y, Lv L, Men W (2021) Restored microRNA-519a enhances the radiosensitivity of non-small cell lung cancer via suppressing EphA2. Gene Ther. https://doi.org/10.1038/s41434-020-00213-x

    Article  PubMed  Google Scholar 

  111. Kaminskyy VO, Hååg P, Novak M et al (2021) EPHA2 interacts with DNA-PKcs in cell nucleus and controls ionizing radiation responses in non-small cell lung cancer cells. Cancers (Basel) 13:1010. https://doi.org/10.3390/cancers13051010

    Article  CAS  PubMed  Google Scholar 

  112. Misale S, Yaeger R, Hobor S et al (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486:532–536. https://doi.org/10.1038/nature11156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Van der Jeught K, Xu H-C, Li Y-J et al (2018) Drug resistance and new therapies in colorectal cancer. World J Gastroenterol 24:3834–3848. https://doi.org/10.3748/wjg.v24.i34.3834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lu Y, Zhao X, Liu Q et al (2017) lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/β-catenin signaling. Nat Med 23:1331–1341. https://doi.org/10.1038/nm.4424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Torlot L, Jarzab A, Albert J et al (2023) Proteomics uncover EPHA2 as a potential novel therapeutic target in colorectal cancer cell lines with acquired cetuximab resistance. J Cancer Res Clin Oncol 149:669–682. https://doi.org/10.1007/s00432-022-04416-0

    Article  CAS  PubMed  Google Scholar 

  116. Colapietro A, Gravina GL, Petragnano F et al (2020) Antitumorigenic effects of inhibiting ephrin receptor kinase signaling by GLPG1790 against colorectal cancer cell lines in vitro and in vivo. J Oncol 2020:9342732. https://doi.org/10.1155/2020/9342732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Fu J, Wang H (2018) Precision diagnosis and treatment of liver cancer in China. Cancer Lett 412:283–288. https://doi.org/10.1016/j.canlet.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  118. Jin Q, Li XJ, Cao PG (2016) MicroRNA-26b enhances the radiosensitivity of hepatocellular carcinoma cells by targeting EphA2. Tohoku J Exp Med 238:143–151. https://doi.org/10.1620/tjem.238.143

    Article  CAS  PubMed  Google Scholar 

  119. Saung MT, Pelosof L, Casak S et al (2021) FDA approval summary: nivolumab plus ipilimumab for the treatment of patients with hepatocellular carcinoma previously treated with sorafenib. Oncologist 26:797–806. https://doi.org/10.1002/onco.13819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Asakura N, Nakamura N, Muroi A et al (2021) Expression of cancer stem cell markers EpCAM and CD90 is correlated with anti- and pro-oncogenic EphA2 signaling in hepatocellular carcinoma. Int J Mol Sci. https://doi.org/10.3390/ijms22168652

    Article  PubMed  PubMed Central  Google Scholar 

  121. Husain A, Chiu Y-T, Sze KM-F et al (2022) Ephrin-A3/EphA2 axis regulates cellular metabolic plasticity to enhance cancer stemness in hypoxic hepatocellular carcinoma. J Hepatol 77:383–396. https://doi.org/10.1016/j.jhep.2022.02.018

    Article  CAS  PubMed  Google Scholar 

  122. Yang P, Yuan W, He J et al (2009) Overexpression of EphA2, MMP-9, and MVD-CD34 in hepatocellular carcinoma: implications for tumor progression and prognosis. Hepatol Res 39:1169–1177. https://doi.org/10.1111/j.1872-034X.2009.00563.x

    Article  PubMed  Google Scholar 

  123. Huang C, Yuan W, Lai C et al (2020) EphA2-to-YAP pathway drives gastric cancer growth and therapy resistance. Int J Cancer 146:1937–1949. https://doi.org/10.1002/ijc.32609

    Article  CAS  PubMed  Google Scholar 

  124. Arienti C, Pignatta S, Tesei A (2019) Epidermal growth factor receptor family and its role in gastric cancer. Front Oncol 9:1308. https://doi.org/10.3389/fonc.2019.01308

    Article  PubMed  PubMed Central  Google Scholar 

  125. Mao L, Yuan W, Cai K et al (2022) Correction to: EphA2-YES1-ANXA2 pathway promotes gastric cancer progression and metastasis. Oncogene 41:1228–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zelinski DP, Zantek ND, Stewart JC et al (2001) EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res 61:2301–2306

    CAS  PubMed  Google Scholar 

  127. Kikawa KD, Vidale DR, Van Etten RL, Kinch MS (2002) Regulation of the EphA2 kinase by the low molecular weight tyrosine phosphatase induces transformation. J Biol Chem 277:39274–39279. https://doi.org/10.1074/jbc.M207127200

    Article  CAS  PubMed  Google Scholar 

  128. Youngblood VM, Kim LC, Edwards DN et al (2016) The ephrin-A1/EPHA2 signaling axis regulates glutamine metabolism in HER2-positive breast cancer. Cancer Res 76:1825–1836. https://doi.org/10.1158/0008-5472.CAN-15-0847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Du J, He Y, Wu W et al (2019) Targeting EphA2 with miR-124 mediates Erlotinib resistance in K-RAS mutated pancreatic cancer. J Pharm Pharmacol 71:196–205. https://doi.org/10.1111/jphp.12941

    Article  CAS  PubMed  Google Scholar 

  130. Ruan H, Li S, Bao L, Zhang X (2020) Enhanced YB1/EphA2 axis signaling promotes acquired resistance to sunitinib and metastatic potential in renal cell carcinoma. Oncogene 39:6113–6128. https://doi.org/10.1038/s41388-020-01409-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Paraiso KHT, Das Thakur M, Fang B et al (2015) Ligand-independent EPHA2 signaling drives the adoption of a targeted therapy-mediated metastatic melanoma phenotype. Cancer Discov 5:264–273. https://doi.org/10.1158/2159-8290.CD-14-0293

    Article  CAS  PubMed  Google Scholar 

  132. Miao B, Ji Z, Tan L et al (2015) EPHA2 is a mediator of vemurafenib resistance and a novel therapeutic target in melanoma. Cancer Discov 5:274–287. https://doi.org/10.1158/2159-8290.CD-14-0295

    Article  CAS  PubMed  Google Scholar 

  133. Azimi A, Tuominen R, Costa Svedman F et al (2017) Silencing FLI or targeting CD13/ANPEP lead to dephosphorylation of EPHA2, a mediator of BRAF inhibitor resistance, and induce growth arrest or apoptosis in melanoma cells. Cell Death Dis 8:e3029. https://doi.org/10.1038/cddis.2017.406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang C, Smalley I, Emmons MF et al (2021) Noncanonical EphA2 signaling is a driver of tumor-endothelial cell interactions and metastatic dissemination in BRAF inhibitor-resistant melanoma. J Invest Dermatol 141:840-851.e4. https://doi.org/10.1016/j.jid.2020.08.012

    Article  CAS  PubMed  Google Scholar 

  135. Fan J, Wei Q, Koay EJ et al (2018) Chemoresistance transmission via exosome-mediated EphA2 Transfer in pancreatic cancer. Theranostics 8:5986–5994. https://doi.org/10.7150/thno.26650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang Y, Liu Y, Li G et al (2015) Ephrin type-A receptor 2 regulates sensitivity to paclitaxel in nasopharyngeal carcinoma via the phosphoinositide 3-kinase/Akt signalling pathway. Mol Med Rep 11:924–930. https://doi.org/10.3892/mmr.2014.2799

    Article  CAS  PubMed  Google Scholar 

  137. Gai Q-J, Fu Z, He J et al (2022) EPHA2 mediates PDGFA activity and functions together with PDGFRA as prognostic marker and therapeutic target in glioblastoma. Signal Transduct Target Ther 7:33. https://doi.org/10.1038/s41392-021-00855-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Moyano-Galceran L, Pietilä EA, Turunen SP et al (2020) Adaptive RSK-EphA2-GPRC5A signaling switch triggers chemotherapy resistance in ovarian cancer. EMBO Mol Med 12:e11177. https://doi.org/10.15252/emmm.201911177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Shen H, Rodriguez-Aguayo C, Xu R et al (2013) Enhancing chemotherapy response with sustained EphA2 silencing using multistage vector delivery. Clin Cancer Res 19:1806–1815. https://doi.org/10.1158/1078-0432.CCR-12-2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Huang C, Chen Z, He Y et al (2021) EphA2 promotes tumorigenicity of cervical cancer by up-regulating CDK6. J Cell Mol Med 25:2967–2975. https://doi.org/10.1111/jcmm.16337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Villamor JG, Kaschani F, Colby T et al (2013) Profiling protein kinases and other ATP binding proteins in arabidopsis using acyl-ATP probes. Mol Cell Proteomics 12:2481–2496. https://doi.org/10.1074/mcp.M112.026278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bethke E, Pinchuk B, Renn C et al (2016) From type I to type II: design, synthesis, and characterization of potent pyrazin-2-ones as DFG-out inhibitors of PDGFRβ. ChemMedChem 11:2664–2674. https://doi.org/10.1002/cmdc.201600494

    Article  CAS  PubMed  Google Scholar 

  143. Peng YH, Shiao HY, Tu CH et al (2013) Protein kinase inhibitor design by targeting the Asp-Phe-Gly (DFG) motif: the role of the DFG motif in the design of epidermal growth factor receptor inhibitors. J Med Chem 56:3889–3903. https://doi.org/10.1021/jm400072p

    Article  CAS  PubMed  Google Scholar 

  144. Vijayan RSK, He P, Modi V et al (2015) Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors. J Med Chem 58:466–479. https://doi.org/10.1021/jm501603h

    Article  CAS  PubMed  Google Scholar 

  145. Kufareva I, Abagyan R (2008) Type-II kinase inhibitor docking, screening, and profiling using modified structures of active kinase states. J Med Chem 51:7921–7932. https://doi.org/10.1021/jm8010299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Melnick JS, Janes J, Kim S et al (2006) An efficient rapid system for profiling the cellular activities of molecular libraries. Proc Natl Acad Sci USA 103:3153–3158. https://doi.org/10.1073/pnas.0511292103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Choi Y, Syeda F, Walker JR et al (2009) Discovery and structural analysis of Eph receptor tyrosine kinase inhibitors. Bioorg Med Chem Lett 19:4467–4470. https://doi.org/10.1016/j.bmcl.2009.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Okun R (1983) Effectiveness of prazosin as initial antihypertensive therapy. Am J Cardiol 51:644–650. https://doi.org/10.1016/S0002-9149(83)80202-1

    Article  CAS  PubMed  Google Scholar 

  149. Kung S, Espinel Z, Lapid MI (2012) Treatment of nightmares with prazosin: a systematic review. Mayo Clin Proc 87:890–900. https://doi.org/10.1016/j.mayocp.2012.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Assad Kahn S, Costa SL, Gholamin S et al (2016) The anti-hypertensive drug prazosin inhibits glioblastoma growth via the PKCδ-dependent inhibition of the AKT pathway. EMBO Mol Med 8:511–526. https://doi.org/10.15252/emmm.201505421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhang J, Fan J (2020) Prazosin inhibits the proliferation, migration and invasion, but promotes the apoptosis of U251 and U87 cells via the PI3K/AKT/mTOR signaling pathway. Exp Ther Med 20:1145–1152. https://doi.org/10.3892/etm.2020.8772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Huber G, Levy J (2001) Development of verteporfin therapy: a collaboration between pharmaceutical companies, device manufacturers and clinical investigators. Semin Ophthalmol 16:213–217. https://doi.org/10.1076/soph.16.4.213.10294

    Article  CAS  PubMed  Google Scholar 

  153. Chan WM, Lim TH, Pece A et al (2010) Verteporfin PDT for non-standard indications-a review of current literature. Graefe’s Arch Clin Exp Ophthalmol 248:613–626. https://doi.org/10.1007/s00417-010-1307-z

    Article  CAS  Google Scholar 

  154. Ma YW, Liu YZ, Pan JX (2016) Verteporfin induces apoptosis and eliminates cancer stem-like cells in uveal melanoma in the absence of light activation. Am J Cancer Res 6:2816–2830

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhang Y, Wang X, Zhou X (2022) Functions of Yes-association protein (YAP) in cancer progression and anticancer therapy resistance. Brain Sci Adv 8:1–18. https://doi.org/10.26599/bsa.2022.9050008

    Article  Google Scholar 

  156. AlAmri MA, Kadri H, Alderwick LJ et al (2018) The photosensitising clinical agent verteporfin is an inhibitor of SPAK and OSR1 kinases. ChemBioChem 19:2072–2080. https://doi.org/10.1002/cbic.201800272

    Article  CAS  PubMed  Google Scholar 

  157. Wei C, Li X (2020) The role of photoactivated and non-photoactivated verteporfin on tumor. Front Pharmacol 11:1–15. https://doi.org/10.3389/fphar.2020.557429

    Article  CAS  Google Scholar 

  158. Zahavi D, Weiner L (2020) Monoclonal antibodies in cancer therapy. Antibodies (Basel, Switzerland). https://doi.org/10.3390/antib9030034

    Article  PubMed  Google Scholar 

  159. Liu JKH (2014) The history of monoclonal antibody development - progress, remaining challenges and future innovations. Ann Med Surg 3:113–116

    Article  Google Scholar 

  160. Li S, Schmitz KR, Jeffrey PD et al (2005) Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7:301–311. https://doi.org/10.1016/j.ccr.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  161. Hasegawa J, Sue M, Yamato M et al (2016) Novel anti-EPHA2 antibody, DS-8895a for cancer treatment. Cancer Biol Ther 17:1158–1167. https://doi.org/10.1080/15384047.2016.1235663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Sakamoto A, Kato K, Hasegawa T, Ikeda S (2018) An agonistic antibody to EPHA2 εxhibits antitumor effects on human melanoma cells. Anticancer Res 38:3273–3282. https://doi.org/10.21873/anticanres.12592

    Article  CAS  PubMed  Google Scholar 

  163. Zantek ND, Azimi M, Fedor-Chaiken M et al (1999) E-cadherin regulates the function of the EphA2 receptor tyrosine kinase. Cell Growth Differ 10:629–638

    CAS  PubMed  Google Scholar 

  164. Carles-Kinch K, Kilpatrick KE, Stewart JC, Kinch MS (2002) Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Res 62:2840–2847

    CAS  PubMed  Google Scholar 

  165. Bruckheimer EM, Fazenbaker CA, Gallagher S et al (2009) Antibody-dependent cell-mediated cytotoxicity effector-enhanced EphA2 agonist monoclonal antibody demonstrates potent activity against human tumors. Neoplasia 11:509–517. https://doi.org/10.1593/neo.81578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kuo MT, Long Y, Tsai W-B et al (2020) Collaboration between RSK-EphA2 and Gas6-Axl RTK signaling in arginine starvation response that confers resistance to EGFR inhibitors. Transl Oncol 13:355–364. https://doi.org/10.1016/j.tranon.2019.12.003

    Article  PubMed  Google Scholar 

  167. Tumeh PC, Harview CL, Yearley JH et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571. https://doi.org/10.1038/nature13954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Jiang H, Hegde S, Knolhoff BL et al (2016) Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med 22:851–860. https://doi.org/10.1038/nm.4123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Markosyan N, Li J, Sun YH et al (2019) Tumor cell-intrinsic EPHA2 suppresses anti-tumor immunity by regulating PTGS2 (COX-2). J Clin Invest 129:3594–3609. https://doi.org/10.1172/JCI127755

    Article  PubMed  PubMed Central  Google Scholar 

  170. Cioce M, Fazio VM (2021) Be a predictive biomarker of response to anti-EGFR agents? 1–24

  171. Strimpakos A, Pentheroudakis G, Kotoula V et al (2013) The prognostic role of ephrin A2 and endothelial growth factor receptor pathway mediators in patients with advanced colorectal cancer treated with cetuximab. Clin Colorectal Cancer 12:267-274.e2. https://doi.org/10.1016/j.clcc.2013.07.001

    Article  CAS  PubMed  Google Scholar 

  172. Zhang T, Li J, Ma X et al (2018) Inhibition of HDACs-EphA2 signaling axis with WW437 demonstrates promising preclinical antitumor activity in breast cancer. EBioMedicine 31:276–286. https://doi.org/10.1016/j.ebiom.2018.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  173. Lee H-Y, Mohammed KA, Goldberg EP et al (2016) Silencing receptor EphA2 enhanced sensitivity to Lipoplatin™ in lung tumor and MPM cells. Cancer Invest 34:293–304. https://doi.org/10.1080/07357907.2016.1201678

    Article  CAS  PubMed  Google Scholar 

  174. Salem AF, Wang S, Billet S et al (2018) Reduction of circulating cancer cells and metastases in breast-cancer models by a potent EphA2-agonistic peptide-drug conjugate. J Med Chem 61:2052–2061. https://doi.org/10.1021/acs.jmedchem.7b01837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Landen CNJ, Chavez-Reyes A, Bucana C et al (2005) Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res 65:6910–6918. https://doi.org/10.1158/0008-5472.CAN-05-0530

    Article  CAS  PubMed  Google Scholar 

  176. Wagner MJ, Mitra R, McArthur MJ et al (2017) Preclinical mammalian safety studies of EPHARNA (DOPC nanoliposomal EphA2-targeted siRNA). Mol Cancer Ther 16:1114–1123. https://doi.org/10.1158/1535-7163.MCT-16-0541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Baggio C, Udompholkul P, Gambini L, Pellecchia M (2022) Targefrin: a potent agent targeting the ligand binding domain of EphA2. J Med Chem. https://doi.org/10.1021/acs.jmedchem.2c01391

    Article  PubMed  PubMed Central  Google Scholar 

  178. Jannu AK, Puppala ER, Gawali B et al (2021) Lithocholic acid-tryptophan conjugate (UniPR126) based mixed micelle as a nano carrier for specific delivery of niclosamide to prostate cancer via EphA2 receptor. Int J Pharm 605:120819. https://doi.org/10.1016/j.ijpharm.2021.120819

    Article  CAS  PubMed  Google Scholar 

  179. Xiao T, Xiao Y, Wang W et al (2020) Targeting EphA2 in cancer. J Hematol Oncol 13:114. https://doi.org/10.1186/s13045-020-00944-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Caetano Krassuski Negrão for proofreading the English version of this piece of work.

Funding

This piece of research was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

RNV designed and wrote the article. DFG and JCO supervised the work and critically revised the manuscript. RNV, DFG, and JCO reviewed and edited the manuscript.

Corresponding author

Correspondence to Daniela Fiori Gradia.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veiga, R.N., de Azevedo, A.L.K., de Oliveira, J.C. et al. Targeting EphA2: a promising strategy to overcome chemoresistance and drug resistance in cancer. J Mol Med 102, 479–493 (2024). https://doi.org/10.1007/s00109-024-02431-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-024-02431-x

Keywords

Navigation