Skip to main content
Log in

Obtention and characterization of PLA/PHBV thin sheets by solvent casting and extrusion with application in food packaging

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Considering the increasingly notorious environmental implications caused by plastic waste, sustainable alternatives are needed. Thus, biodegradable polymers are presented as a concrete alternative within the food packaging sector, where their storage, transport and marketing involve large volumes of plastic waste. Therefore, in this study, PHBV/PLA thin sheets were developed by extrusion and solvent casting as a first stage in the search for biodegradable plastic sheeting to replace non-biodegradable common materials such as polypropylene (PP) in food packaging. Although PHBV (poly 3-hydroxy butyrate-co-3-hydroxy valerate, the main polymer in the formulation) has excellent crystallinity, barrier properties and biodegradability, unfortunately, its thermal instability and high rigidity create difficulties in its processing. Thus, PLA gives the PHBV/PLA mixture greater plasticity and thermal resistance. Consequently, PHBV/PLA thin sheets were obtained by solvent casting and extrusion at four proportions: 50/50, 60/40, 80/20 and 100/0 (%w/w). Since most research on films is done by the solvent-cast method, considering the ease of this method, it is interesting to study and compare the physicochemical and mechanical properties of this method with another that allows easy scaling, such as extrusion. Therefore, thin sheets obtained by the two methodologies were characterized by transmittance, stress–strain, water absorption, water vapour permeability and hydrophobicity tests. The results show that the extruded thin sheets have better mechanical properties than solvent-casted sheets. On the other hand, of the formulations studied, PHBV/PLA 50/50 presented the physicochemical and mechanical properties closest to PP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Plastics Europe and Epno 2020 Plastics—the Facts 2020 An analysis of European plastics production, demand and waste data PLASTICS EUROPE 20–7

  2. Adorna J, Ventura R L, Dang V D, Doong R and Ventura J 2022 J. Appl. Polym. Sci. 139 51645

    Article  Google Scholar 

  3. Chiulan I, Mihaela Panaitescu D, Nicoleta Frone A, Teodorescu M, Andi Nicolae C and Căşărică A 2016 J. Biomed. Mater. Res. A 104 2576

    Article  CAS  PubMed  Google Scholar 

  4. Arrieta M P, Fortunati E, Dominici F, Rayón E, López J and Kenny J M 2014 Carbohydr. Polym. 107 16

    Article  CAS  PubMed  Google Scholar 

  5. Shang L, Fei Q, Zhang Y H, Wang X Z, Fan D-D and Chang H N 2012 J. Polym. Environ. 20 23

    Article  CAS  Google Scholar 

  6. McAdam B, Brennan Fournet M, McDonald P and Mojicevic M 2020 Polymers (Basel) 12 2908

    Article  CAS  PubMed  Google Scholar 

  7. Rivera A and Serrano Á 2018 Nereis Rev. Iberoam. Interdiscip. Métod. Modelización Simul. 10 79

    Google Scholar 

  8. Lim L, Auras R and Rubino M 2008 Prog. Polym. Sci. 33 820

    Article  CAS  Google Scholar 

  9. Fortunati E, Armentano I, Iannoni A and Kenny J 2010 Polym. Degrad. Stab. 95 2200

    Article  CAS  Google Scholar 

  10. Qi Y, Ma H-L, Du Z-H, Yang B, Wu J and Wang R 2019 ACS Omega 4 21439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Olejnik O, Masek A and Zawadziłło J 2021 Materials 14 898

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pietrosanto A, Scarfato P, Di Maio L and Incarnato L 2021 Chem. Eng. Trans. 87 91

    Google Scholar 

  13. Dasan Y, Bhat A and Ahmad F 2017 Carbohydr. Polym. 157 1323

    Article  CAS  PubMed  Google Scholar 

  14. Dhar P, Bhardwaj U, Kumar A and Katiyar V 2015 Polym. Eng. Sci. 55 2388

    Article  CAS  Google Scholar 

  15. Becerra Melo and de Albuquerque R 2019 Desenvolvimento de uma blenda biodegradável à base de celulose bacteriana (cb) e polihidroxibutirato (phb) para aplicação como embalagem ativa para alimentos (Pernambuco: Universidade Católica De Pernambuco)

    Google Scholar 

  16. Ribeiro F A dos S V, Cavalcante M de P, Tavares M I B and Melo A R A 2021 Polym. Polym. Compos. 29 553

  17. Seoane I, Cerrutti P, Vazquez A, Manfredi L and Cyras V 2017 J. Polym. Environ. 25 586

    Article  CAS  Google Scholar 

  18. Mofokeng J and Luyt A 2015 Thermochim. Acta 613 41

    Article  CAS  Google Scholar 

  19. Bledzki A and Jaszkiewicz A 2010 Compos. Sci. Technol. 70 1687

    Article  CAS  Google Scholar 

  20. Jost V 2015 Chem. Biochem. Eng. Q 29 221

    Article  CAS  Google Scholar 

  21. Franzoso F, Vaca C, Rouilly A, Evon P, Montoneri E and Persico P 2016 J. Appl. Polym. Sci. 133 1

    Article  Google Scholar 

  22. Zhao H, Cui Z, Wang X, Turng L-S and Peng X 2013 Compos. B Eng. 51 79

    Article  CAS  Google Scholar 

  23. Boufarguine M, Guinault A, Miquelard G and Sollogoub C 2013 Macromol. Mater. Eng. 298 1065

    Article  CAS  Google Scholar 

  24. Zhao H, Cui Z, Sun X, Turng L-S and Peng X 2013 Ind. Eng. Chem. Res. 52 2569

    Article  CAS  Google Scholar 

  25. Garavito J, Mendoza S M and Castellanos D A 2022 J. Food Eng. 314 1

    Article  Google Scholar 

  26. Antunes A, Luyt A, Popelka A, Mahmoud A, Aljarod O and Hassan M 2021 Express. Polym. Lett. 15 687

    Article  CAS  Google Scholar 

  27. Snowdon M, Mohanty A and Misra M 2017 ACS Omega 2 6446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mohan S, Kumar A and Katiyar V 2020 Compos. B Eng. 184 1

    Google Scholar 

  29. Ghasemi I and Kord B 2009 Iran. Polym. J. 18 683

    CAS  Google Scholar 

  30. Keller P and Kouzes R 2017 Water vapor permeation in plastics Pacific Northwest National Laboratory 7

  31. Hernández-García E, Vargas M, Chiralt A and González-Martínez C 2022 Foods 11 243

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guzman S, Benítez J and Heredia J 2022 Food Res. Int. 161 111

    Google Scholar 

Download references

Acknowledgements

We thank the Universidad Nacional de Colombia for financing the project ‘RIGID PHB FILMS AS A SUBSTITUTE FOR POLYPROPYLENE IN PACKAGING’ HERMES: 50994, and the Colombian Ministry of Science and Technology for funding the project ‘Development of biopackaging based on polyhydroxyalkanoates for food handling’ 80740-171-2021. We also thank Total Corbion for supplying the PLA Luminy LX175 and Daminer for PHBV DAN 02198.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César A Sierra.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Martinez, V., Bello-Rocha, L., Rodríguez-Rodriguez, C. et al. Obtention and characterization of PLA/PHBV thin sheets by solvent casting and extrusion with application in food packaging. Bull Mater Sci 47, 47 (2024). https://doi.org/10.1007/s12034-023-03133-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03133-9

Keywords

Navigation