Skip to main content
Log in

Two-dimensional dynamics of ion-acoustic waves in a magnetised electronegative plasma

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We consider a plasma model made of negative ions and electrons in Boltzmann distribution and cold mobile positive ions, under the influence of an external magnetic field, to study the propagation of ion-acoustic waves (IAWs). From the hydrodynamic equations of the two-dimensional (2D) electronegative plasma, the dynamics of the system is reduced via the reductive perturbation method to the Davey–Stewartson (DS) equations. Using the linear stability analysis of planar waves, an expression of the modulational instability growth rate is derived, and its response to system parameters, such as the negative ion concentration ratio, the electron-to-negative ion temperature ratio and the magnetic field is discussed. It comes out that the instability occurs for high values of the negative ion concentration ratio and in a very restrained area of small magnetic field values. The growth rate is maximum for high values of both the electron-to-negative ion temperature ratio and the magnetic field. The existence of IAWs in the model is confirmed. One-dromion and two-dromion solutions are investigated analytically using the Hirota’s bilinear method and numerically. The impact of the magnetic field is discussed in that context, and particular attention is given to dromion interactions under different scenarios. We noted a slowing effect on the propagation of the dromion solutions in the presence of the magnetic field. Elastic collision of two-dromion solutions is observed during their evolution, with an acceleration of the process in the presence of the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availibility Statement

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. D Mihalache, D Mazilu, F Lederer, Y V Kartashov, L-C Crasovan, L Torner and B A Malomed, Phys. Rev. Lett. 97, 073904 (2006)

  2. D D E Temgoua and T C Kofané, Phys. Rev. E 93, 062223 (2016)

  3. M Djoko and T C Kofané, Opt. Commun. 416, 198 (2018)

    Article  ADS  Google Scholar 

  4. A Djazet, S I Fewo, E B N Nkouankam and T C Kofané, Eur. Phys. J. D 74, 67 (2020)

    Article  ADS  CAS  Google Scholar 

  5. L T Megne, C B Tabi and T C Kofané, Phys. Rev. E 102, 042207 (2020)

  6. J A A Otsobo, L T Megne , C B Tabi and T C Kofané, Chaos Solitons Fractals 158, 112034 (2022)

  7. J B Okaly, A Mvogo, C B Tabi, H P E Fouda and T C Kofané, Phys. Rev. E 102, 062402 (2020)

  8. A S Etémé, C B Tabi and A Mohamadou, Commun. Nonlin. Sci. Numer. Simulat. 43, 211 (2017)

    Article  ADS  Google Scholar 

  9. C B Tabi, R Y Ondoua, H P Ekobena, A Mohamadou and T C Kofané, Phys. Lett. A 380, 2374 (2016)

    Article  ADS  CAS  Google Scholar 

  10. G R Y Mefire, C B Tabi, A Mohamadou, H P F Ekobena and T C Kofané, Chaos 23, 033128 (2013)

    Article  ADS  Google Scholar 

  11. A X Zhang and J K Xue, Phys. Rev. A 75, 013624 (2007)

    Article  ADS  Google Scholar 

  12. P Otlaadisa, C B Tabi and T C Kofané, Phys. Rev. E 103, 052206 (2021)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. P A Andreev and L S Kuzmenkov, Phys. Rev. A 78, 053624 (2008)

    Article  ADS  Google Scholar 

  14. E A Kuznetsov, A M Rubenchik and V E Zakharov, Phys. Rep. 142, 103 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  15. J Borhanian, I Kourakis and S Sobhanian, Phys. Lett. A 373, 3667 (2009)

    Article  ADS  CAS  Google Scholar 

  16. I Langmuir, Proc. Natl. Acad. Sci. 14, 627 (1928)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. S Ali, W M Moslem, P K Shukla and R Schlickeiser, Phys. Plasmas 14, 082307 (2007)

    Article  ADS  Google Scholar 

  18. I Paul, A Chatterjee and S N Paul, Laser Part. Beams 37, 378 (2019)

    Article  ADS  Google Scholar 

  19. X-W Cheng, Z-G Zhang and H-W Yang, Chin. Phys. B 29, 124501 (2020)

    Article  ADS  Google Scholar 

  20. K N Ostrikov, S Kumar and H Sugai, Phys. Plasmas 7, 3490 (2001)

    Article  ADS  Google Scholar 

  21. M Djebli, Phys. Plasmas 10, 4910 (2003)

    Article  ADS  CAS  Google Scholar 

  22. A A Mamun and P K Shukla, Phys. Plasmas 10, 1518 (2003)

    Article  ADS  CAS  Google Scholar 

  23. N Shahmohammadi and D Dorranian, Contrib. Plasma Phys. 55, 643 (2015)

    Article  ADS  CAS  Google Scholar 

  24. K Annou and R Annou, Phys. Plasmas 19, 043705 (2012)

    Article  ADS  Google Scholar 

  25. J-C Sun, Z-G Zhang, H-H Dong and H-W Yang, Commun. Theor. Phys. 72, 125001 (2020)

    Article  ADS  Google Scholar 

  26. Z X Wang, J Y Liu, X Zou, Y Liu and X G Wang, Chin. Phys. Lett. 20, 1537 (2003)

    Article  ADS  Google Scholar 

  27. C S Panguetna, C B Tabi and T C Kofané, Phys. Plasmas 24, 092114 (2017)

    Article  ADS  Google Scholar 

  28. C S Panguetna, C B Tabi and T C Kofané, J. Theor. Appl. Phys. 13, 237 (2019)

    Article  ADS  Google Scholar 

  29. X Zou, J Y Liu, Z X Wang, Y Gong, Y Liu and X G Wang, Chin. Phys. Lett. 21, 1572 (2004)

    Article  ADS  Google Scholar 

  30. X Zou, H-P Liu, M-H Qiu and X-H Sun Chin. Phys. Lett. 28, 125201 (2011)

    Article  ADS  Google Scholar 

  31. M Aslaninejad and K Yasserian, Phys. Plasmas 19, 033504 (2012)

  32. J-J Li, J X Ma and Z-A Wei, Phys. Plasmas 20, 063503 (2013)

    Article  ADS  Google Scholar 

  33. A Aanesland, J Bredin and P Chabert, Plasmas Sources Sci. Technol. 23, 044003 (2014)

    Article  ADS  CAS  Google Scholar 

  34. K Yasserian and M Aslaninejad, J. Theor. Appl. Phys. 13, 251 (2019)

    Article  ADS  Google Scholar 

  35. S K El-Labany, E E Behery, H N A El-Razek and L A Abdelrazek, Eur. Phys. J. D 74, 104 (2020)

    Article  ADS  CAS  Google Scholar 

  36. R Paul, S Adhikari, R Moulick, S S Kausik and B K Saikia, Phys. Plasmas 27, 063520 (2020)

    Article  ADS  CAS  Google Scholar 

  37. L Wang, M Vass, Z Donko, P Hartmann, A Dersi, Y-H Song and J Schulze, Plasmas Sources Sci. Technol. 31, 06LT01 (2022)

  38. S Ganyou, S I Fewo, C S Panguetna and T C Kofané, Results Phys. 52, 106821 (2023)

    Article  Google Scholar 

  39. H Washimi and T Taniuti, Phys. Rev. Lett. 17, 996 (1966)

    Article  ADS  CAS  Google Scholar 

  40. T Kimura, K Imagaki and K Ohe, J. Phys. D: Appl. Phys. 31, 2295 (1998)

    Article  ADS  CAS  Google Scholar 

  41. O Rahman, A A Mamun and K S Ashrafi, Astrophys. Space Sci. 335, 425 (2011)

    Article  ADS  CAS  Google Scholar 

  42. V Berezhnoj, C B Shin, U Buddemeier and I Kaganovich, Appl. Phys. Lett. 77, 800 (2000)

    Article  ADS  CAS  Google Scholar 

  43. E N Kenkeu, A B T Motcheyo, T Kanaa and C Tchawoua, Phys. Plasmas 29, 043702 (2022)

    Article  ADS  Google Scholar 

  44. R Ichiki, S Yoshimura, T Watanabe, Y Nakamura and Y Kawai, Phys. Plasmas 9, 4481 (2002)

    Article  ADS  CAS  Google Scholar 

  45. R A Gottscho and C E Gaebe, IEEE Trans. Plasma Sci. 14, 92 (1986)

    Article  ADS  Google Scholar 

  46. J Jacquinot, B D McVey and J E Scharer, Phys. Rev. Lett. 39, 88 (1977)

    Article  ADS  CAS  Google Scholar 

  47. Y I Portnyagin, O F Klyuev, A A Shidlovsky, A N Evdokimov, T W Buzdigar, P G Matukhin, S G Pasynkov, K N Shamshev, V V Sokolov and N D Semkin, Adv. Space Res. 11, 89 (2011)

    Article  ADS  Google Scholar 

  48. R Sabry, W M Moslem and P K Shukla, Phys. Plasmas 16, 032302 (2009)

    Article  ADS  Google Scholar 

  49. A J Coates, F J Crary, G R Lewis, D T Young, J H Waite Jr and E C Sittler Jr, Geophys. Res. Lett. 34, L22103 (2007)

    ADS  Google Scholar 

  50. A A Mamun, P K Shukla and B Eliasson, Phys. Rev. E 80, 046406 (2009)

    Article  ADS  CAS  Google Scholar 

  51. C S Panguetna, C B Tabi and T C Kofané, Commun. Nonlin. Sci. Numer. Simulat. 55, 326 (2018)

    Article  ADS  Google Scholar 

  52. C B Tabi, C S Panguetna and T C Kofané, Physica B 545, 70 (2018)

    Article  Google Scholar 

  53. M G Anowar, K S Ashrafi and A A Mamun, J. Plasma Phys. 77, 133 (2011)

    Article  ADS  CAS  Google Scholar 

  54. S Duha, M S Rahman, A A Mamun and G M Anowar, J. Plasma Phys. 78, 279 (2012)

    Article  ADS  CAS  Google Scholar 

  55. U M Abdelsalam, Ain Shams Eng. J. 12, 4111 (2021)

    Article  Google Scholar 

  56. A R Alharbi, Comput. Model. Eng. Sci. 134(3), 2193 (2022)

    MathSciNet  Google Scholar 

  57. A R Alharbi, AIMS Math. 8(1), 1230 (2022)

    Article  MathSciNet  Google Scholar 

  58. S Frassu, T Li and G Viglialoro, Math. Meth. Appl. Sci. 45(17), 11067 (2022)

    Article  Google Scholar 

  59. A Davey and K Stewartson, Proc. R. Soc. London-Ser. A 338, 101 (1974)

    Article  ADS  Google Scholar 

  60. A C Newell and J V Moloney, Nonlinear Optics (Addison-Wesley, Redwood City, 1992)

    Google Scholar 

  61. G Huang, L Deng and C Hang, Phys. Rev. E 72, 036621 (2005)

    Article  ADS  Google Scholar 

  62. H Leblond, J. Phys. A: Math. Gen. 32, 7907 (1999)

    Article  ADS  CAS  Google Scholar 

  63. L Y Sung, J. Math. Anal. Appl. 183, 121 (1994)

    Article  MathSciNet  Google Scholar 

  64. L Y Sung, J. Nonlinear Sci. 5, 433 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  65. Y Ohta and J Yang, Phys. Rev. E 86, 036604 (2012)

    Article  ADS  Google Scholar 

  66. Y Ohta and J Yang, J. Phys. A: Math. Theor. 46, 105202 (2013)

    Article  ADS  Google Scholar 

  67. H-X Jia, D-W Zuo, X-H Li and X-S Xiang, Phys. Lett. A 405, 127426 (2021)

    Article  CAS  Google Scholar 

  68. H G Abdelwahed, E K El-Shewy, S Alghanim and M A E Abdelrahman, Fractal Fract. 6, 430 (2022)

    Article  Google Scholar 

  69. H G Abdelwahed, A F Alsarhana, E K El-Shewy and M A E Abdelrahman, Phys. Fluids 35, 037129 (2023)

    Article  ADS  CAS  Google Scholar 

  70. E K El-Shewy, Y F Alharbi and M A E Abdelrahman, Chaos Solitons Fractals 170, 113324 (2023)

    Article  Google Scholar 

  71. J Hietarinta and R Hirota, Phys. Lett. A 145, 5 (1990)

    Article  Google Scholar 

  72. R H Heredero, L M Alonso and E M Reus, Phys. Lett. A 152, 1 (1991)

    Article  Google Scholar 

  73. M Boiti, J J-P Leon, L Martina and F Pempinelli, Phys. Lett. A 132, 8 (1988)

    Article  Google Scholar 

  74. T-C Xia and D-Y Chen, Chaos Solitons Fractals 22, 577 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  75. G Xu, Chaos Solitons Fractals 30, 71 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  76. N Prathap, S Arunprakasha, M S M Rajan and K Subramanian, Optik 158, 1179 (2018)

    Article  ADS  Google Scholar 

  77. S Veni and M S M Rajan, Opt. Quant. Electron. 55, 107 (2023)

    Article  Google Scholar 

  78. R. Hirota, Phys. Rev. Lett. 27, 1192 (1971)

    Article  ADS  Google Scholar 

  79. L Li, C Duan and F Yu, Phys. Lett. A 383, 1578 (2019)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  80. W X Ma, Opt. Quant. Electron. 52, 511 (2020)

    Article  Google Scholar 

  81. W X Ma, Math. Comput. Simulat. 190, 270 (2021)

    Article  Google Scholar 

  82. S Kumar and B Mohan, Part. Diff. Eq. Appl. Math. 5, 100274 (2022)

    Google Scholar 

  83. S Basnet, A Patel and R Khanal, Plasma Phys. Control. Fusion 62, 115011 (2020)

    Article  ADS  CAS  Google Scholar 

  84. M M Hatami, Sci. Rep. 11, 9531 (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. M A Lieberman and A Lichtenberg, Principle of plasma discharges and materials processing, 2nd Edn (Wiley, New York, 2005)

    Book  Google Scholar 

  86. D Vender, W W Stoffels, E Stoffels, G M W Kroesen and F J de Hoog, Phys. Rev. E 51, 2436 (1995)

    Article  ADS  CAS  Google Scholar 

  87. R N Franklin, Plasma Sources Sci. Technol. 11, A31 (2002)

    Article  ADS  CAS  Google Scholar 

  88. P Chabert, A J Lichtenberg and M A Lieberman, Phys. Plasmas 14, 093502 (2007)

    Article  ADS  Google Scholar 

  89. N Plihon, P Chabert and C S Corr, Phys. Plasmas 14, 013506 (2007)

    Article  ADS  Google Scholar 

  90. A Meige, N Plihon, G J M Hagelaar, J-P Boeuf, P Chabert and R W Boswell, Phys. Plasmas 14, 053508 (2007)

    Article  ADS  Google Scholar 

  91. T H Chung, Phys. Plasmas 16, 063503 (2009)

    Article  ADS  Google Scholar 

  92. P K Shukla and B Eliasson, Rev. Mod. Phys. 81, 25 (2009)

    Article  ADS  Google Scholar 

  93. N D’Angelo, J. Phys. D 37, 860 (2004)

    Article  ADS  Google Scholar 

  94. B M Annaratone, T Antonova, H M Thomas and G E Morfill, Phys. Rev. Lett. 93, 185001 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  95. B M Annaratone and J E Allen, J. Phys. D 38, 26 (2005)

    Article  ADS  CAS  Google Scholar 

  96. M Rosenberg and R L Merlino, J. Plasma Phys. 75, 495 (2009)

    Article  ADS  Google Scholar 

  97. A A Mamun, R A Cairns and P K Shukla, Phys. Lett. A 373, 2355 (2009)

    Article  ADS  CAS  Google Scholar 

  98. V M Vasyliunas, J. Geophys. Res. 73, 2839 (1938)

    Article  ADS  Google Scholar 

  99. R A Cairns, A A Mamun, R Bingham, R Bostrom, R O Dendy, C M C Nairn and P K Shukla, Geophys. Rev. Lett. 22, 2709 (1995)

    Article  ADS  Google Scholar 

  100. C Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  101. A Mannan, A A Mamun and P K Shukla, Phys. Scr. 85, 065501 (2012)

    Article  ADS  Google Scholar 

  102. S K El-Labany, W M Moslem, K A Shnishin, S A El-Tantawy and P K Shukla, Phys. Plasma 18, 042306 (2011)

    Article  ADS  Google Scholar 

  103. W Craig, U Schanz and C Sulem, Ann. Inst. Henri Poincare (C) 14, 615 (1977)

    Google Scholar 

  104. K Nishinari, K Abe and J Satsuma, Phys. Plasmas 1, 2559 (1994)

    Article  ADS  Google Scholar 

  105. J-K Xue, Phys. Lett. A 330, 390 (2004)

    Article  ADS  CAS  Google Scholar 

  106. C Bedi and T S Gill, Phys. Plasmas 19, 062109 (2012)

    Article  ADS  Google Scholar 

  107. P Carbonaro, Chaos Solitons Fractals 45, 959 (2012)

    Article  ADS  Google Scholar 

  108. K Nishinari, K Abe and J Satsuma, J. Phys. Soc. Jpn 6, 2021 (1993)

    Article  ADS  Google Scholar 

  109. K Nishinari, K Abe and J Satsuma, Theor. Math. Phys. 99, 745 (1994)

    Article  Google Scholar 

  110. M J Ablowitz and P A Clarkson, Solitons, nonlinear evolution equations and inverse scattering (Cambridge University Press, Cambridge, 1991)

    Book  Google Scholar 

  111. V B Matveev and M A Salle, Darboux transformations and solitons (Springer-Verlag, Berlin, 1991)

    Book  Google Scholar 

  112. J Hietarinta, Introduction to the Hirota bilinear method (Springer, Berlin, Heidelberg, 1997)

    Book  Google Scholar 

  113. M Saravi, E Babolian, R England and M Bromilow, Comput. Math. Appl. 59, 1524 (2010)

    Article  MathSciNet  Google Scholar 

  114. W Malfliet and W Hereman, Phys. Scr. 54, 563 (1996)

    Article  ADS  CAS  Google Scholar 

  115. Q Wang, Y Chen and H Zhang, Appl. Math. Comput. 181, 247 (2006)

    MathSciNet  Google Scholar 

  116. E Fan and H Zhang, Phys. Lett. A 246, 403 (1998)

    Article  ADS  CAS  Google Scholar 

  117. S Lou, Phys. Scr. 65, 7 (2002)

    Article  ADS  CAS  Google Scholar 

  118. S Lou and J Lu, J. Phys. A 29, 4209 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  119. Z Yan and H Q Zhang, Phys. Lett. A 285, 355 (2001)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  120. C B Tabi, A Mohamadou and T C Kofané, Phys. Lett. A 373, 2476 (2009)

    Article  ADS  CAS  Google Scholar 

  121. C B Tabi, A Mohamadou and T C Kofané, Phys. Scr. 77, 045002 (2008)

    Article  ADS  Google Scholar 

  122. M J Ablowitz and H Segur, Solitons and the inverse scattering transform (SIAM, Philadelphia, 1981)

    Book  Google Scholar 

  123. R Radha and M Lakshmanan, J. Phys. A: Math. Gen. 30, 3229 (1997)

    Article  ADS  Google Scholar 

  124. S S Ghosh, A Sen and G S Lakhina, Nonlin. Process Geophys. 9, 463 (2002)

    Article  ADS  Google Scholar 

  125. N S Saini, Y Ghai and R Kohli, J. Geophys. Res. 121, 5944 (2016)

    Article  Google Scholar 

  126. M A-Moghanjoughi, Phys. Plasmas 17, 092304 (2010)

  127. H P Le and J-L Cambier, Phys. Plasmas 23, 063505 (2016)

    Article  ADS  Google Scholar 

  128. J Vranjes, M Kono, D Petrovic, S Poedts, A Okamoto, S Yoshimura and M Y Tanaka, Plasma Sour. Sci. Technol. 15, S1 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge I Fewo.

Appendices

Appendix A: Various coefficients

The coefficients appearing in various equations are defined as follows:

$$\begin{aligned}{} & {} \beta _1=\omega ^2 (k^2+a_1) -k_z^2,\nonumber \\{} & {} \beta _2=\omega ^2 (4k^2+a_1) -k_z^2, \nonumber \\{} & {} u_{x\phi }= \frac{\beta _1 }{k_x \omega },\nonumber \\{} & {} u_{z\phi }= \frac{k_z }{\omega },\nonumber \\{} & {} u_{y\phi }= -\frac{i\beta _1 \Omega }{k_x \omega ^2 }, \nonumber \\{} & {} u_{x\xi }=- \frac{2\omega }{ k^2+a_1}+ \frac{\beta _1}{k_x^2 \omega (k^2+a_1)} -\frac{\beta _2 v_{gx}}{k_x\omega ^2 (k^2+a_1)}, \nonumber \\{} & {} u_{x\eta }= - \frac{2k_z \omega }{ k_x (k^2+a_1)}+ \frac{2k_z}{k_x \omega (k^2+a_1)}\nonumber \\ {}{} & {} \qquad \quad -\frac{\beta _2 v_{gz}}{k_x\omega ^2 (k^2+a_1)}, \nonumber \\{} & {} u_{y\xi }=- \frac{2\Omega }{ k^2+a_1}+ \frac{\beta _1 \Omega }{k_x^2 \omega ^2(k^2+a_1)} -\frac{2k_z^2 \Omega v_{gx}}{k_x\omega ^3 (k^2+a_1)},\nonumber \\{} & {} u_{z\xi }=\frac{k_z v_{gx} }{\omega ^2 (k^2+a_1)}, \nonumber \\ {}{} & {} u_{z\eta }= - \frac{1}{\omega (k^2+a_1)} \left( v_{gz} \frac{k_z}{\omega }-1\right) , \end{aligned}$$
(A.1)
$$\begin{aligned}{} & {} {\alpha _\phi } = \frac{\left\{ \begin{aligned}&(4\omega ^2-\Omega ^2)(2({k^2} + {a_1})^2 \omega ^2 +k_z^2({k^2} + {a_1})\\&-2{a_2 \omega ^2})+2\beta _1 ({k^2} + {a_1})\left( 2{\omega ^2} + {\Omega ^2} \right) \end{aligned} \right\} }{2(k^2 +a_1)^2\left( \beta _2(4\omega ^2 -\Omega ^2) -4k_x^2 \omega ^2\right) },\nonumber \\{} & {} {\alpha _n} = ( {4{k^2} + {a_1}} ){\alpha _\phi } + \frac{{{a_2}}}{{{{({k^2} + {a_1})}^2}}}, \nonumber \\{} & {} {\alpha _{{u_x}}} = \frac{\omega }{k_x} ({\alpha _n} -1) - \frac{k_z }{k_x}\alpha _{{u_z}}, \nonumber \\{} & {} {\alpha _{{u_y}}}= - \frac{\Omega }{2\omega }\left( {\alpha _{{u_x}}} - \frac{\beta _1}{{k_x \omega ({k^2} + {a_1}) }}\right) ,\nonumber \\{} & {} {\alpha _{{u_z}}} = \frac{k_z }{\omega } {\alpha _\phi } +\frac{k_z }{2 \omega ({k^2} + {a_1})}. \end{aligned}$$
(A.2)

Appendix B: Equations and other coefficients

The third-order (\(\varepsilon ^3\)) reduced equations for \(l=0\) are obtained as set of couple equations

$$\begin{aligned}{} & {} - v_{gx} \frac{{\partial \phi _0^{(2)} }}{{\partial \xi }} - v_{gz} \frac{{\partial \phi _0^{(2)} }}{{\partial \eta }} + \frac{{\partial u_{z0}^{(2)} }}{{\partial \eta }} \nonumber \\{} & {} \quad = A_{\xi }\frac{{\partial | {n_1^{(1)} } |^2 }}{{\partial \xi }}+ A_{\eta }\frac{{\partial | {n_1^{(1)} } |^2 }}{{\partial \eta }},\nonumber \\{} & {} - v_{gx} \frac{{\partial u_{z0}^{(2)} }}{{\partial \xi }} - v_{gz} \frac{{\partial u_{z0}^{(2)} }}{{\partial \eta }} + \frac{{\partial \phi _0^{(2)} }}{{\partial \eta }}\nonumber \\{} & {} \quad = B_{\xi }\frac{{\partial | {n_1^{(1)} } |^2 }}{{\partial \xi }} + B_{\eta }\frac{{\partial | {n_1^{(1)} } |^2 }}{{\partial \eta }}, \end{aligned}$$
(B.1)

where

$$\begin{aligned} A_{\xi }= & {} \frac{2v_{gx}a_2}{(k^2+a_1)^2},\\ A_{\eta }= & {} \frac{2v_{gz}a_2}{(k^2 +a_1)^2} -\frac{2k_z}{\omega (k^2+a_1)}, \\ B_{\xi }= & {} \frac{2}{(k^2+a_1)^2}\\{} & {} \times \left[ -\frac{k_z \beta _1}{k_x \omega ^2} + k_x k_z +\frac{k_z v_{gz}}{2 \omega ^3 (k^2+a_1)^2} (\beta _1+\beta _2)\right] , \end{aligned}$$
$$\begin{aligned} B_{\eta }= & {} \frac{1}{(k^2+a_1)^2}\left[ \frac{ \beta _1}{\omega ^2} -\frac{3k_z^2 }{ \omega ^2}+ 2 k_z^2 +\frac{k_z v_{gz}}{\omega ^3 } (\beta _2-\beta _1)\right] . \end{aligned}$$

The coefficients of eq. (9) are as follows:

$$\begin{aligned} \begin{aligned}&{\delta _1} = - {v_{gx}^2}{a_1}, \quad {\delta _{\xi \eta }} = - 2{v_{gx}} {v_{gz}}{a_1}, \quad {\delta _{\eta }} = 1 - {v_{gz}^2}{a_1}, \\&{\delta _2} = - v_{gx} A_{\xi },\quad {\delta _{23}} = -v_{gx} A_{\eta }- v_{gz}A_{\xi }-B_{\xi },\\&{\delta _3} =- v_{gz} A_{\eta }+B_{\eta }, \end{aligned} \end{aligned}$$
(B.2)

Appenidx C Coefficients of DSEs

The set of both eqs. (10) and (9)

$$\begin{aligned} \gamma {_{\tau }}= & {} \frac{2}{\omega }( \Omega ^4(k^2+a_1)+ k_z^2 \Omega ^2), \end{aligned}$$
(C.1)
$$\begin{aligned} \gamma {_1}= & {} \frac{1}{\gamma {_{\tau }}}\left[ \begin{array}{l} {v_{gx}} \left( \begin{array}{l} -2 k_x \omega (\omega ^2-\Omega ^2)+ k_x \omega ^2 (k^2 +a_1)u_{x\xi } + k_x \omega \Omega (k^2+a_1)u_{y\xi } \\ + k_z (\omega ^2-\Omega ^2) (k^2+a_1)u_{z\xi } \end{array} \right) \\ -\omega (\omega ^2-\Omega ^2)(k^2+a_1)u_{z\xi }-\omega ^2 (\omega ^2-\Omega ^2) \end{array}\right] , \end{aligned}$$
(C.2)
$$\begin{aligned} \gamma {_{12}}= & {} \frac{1}{\gamma {_{\tau }}}\left[ \begin{aligned}&-2 \omega (\omega ^2-\Omega ^2)(k^2+a_1) (k_z {v_{gx}} + k_x{v_{gz}})-\omega (\omega ^2-\Omega ^2)(k^2+a_1) (u_{x\eta }+u_{z\xi }) \\&+ k_x \omega ^2 (k^2+a_1) ({v_{gx}}u_{x\eta } + {v_{gz}}u_{x\xi })+ k_x \omega \Omega (k^2+a_1)({v_{gx}}u_{y\eta } + {v_{gz}}y_{x\xi })\\&+ k_z (\omega ^2-\Omega ^2)(k^2+a_1)({v_{gx}}u_{z\eta } + {v_{gz}}u_{z\xi })\end{aligned}\right] , \end{aligned}$$
(C.3)
$$\begin{aligned} \gamma {_2}= & {} \frac{1}{\gamma {_{\tau }}}\left[ \begin{array}{l} {v_{gz}}\left( \begin{array}{l}-2 k_z \omega (\omega ^2-\Omega ^2)+ k_x \omega ^2 (k^2+a_1)u_{x\eta } + k_x \omega \Omega (k^2+a_1)u_{y\eta } + k_z (\omega ^2-\Omega ^2)(k^2+a_1)u_{z\eta }\end{array}\right) \\ -\omega (\omega ^2-\Omega ^2)(k^2+a_1)u_{z\eta }-\omega ^2 (\omega ^2-\Omega ^2)\end{array}\right] ,\nonumber \\\end{aligned}$$
(C.4)
$$\begin{aligned} \gamma {_3}= & {} \frac{1}{\gamma {_{\tau }}}\left[ \begin{array}{l} - \omega (\omega ^2-\Omega ^2)\left( \begin{array}{l} (k^2+a_1) ( k_x{\alpha _{{u_x}}} +k_z \alpha _{{u_z}}) + \dfrac{1}{\omega }( \alpha _n(\beta _1+k_z^2)-2\beta _1)\\ + \dfrac{a_2}{\omega (k^2+a_1)}(2\beta _1+k_z^2) \end{array}\right) \\ + k_x \omega ^2\left( {\alpha _{{u_x}}} \bigg (\dfrac{2k_z^2 \Omega }{\omega } -\dfrac{\beta _1}{\omega }\bigg ) +\dfrac{\beta _1\alpha _{{u_z}}}{\omega } +\dfrac{2\beta _{1}^2}{k_x\omega ^2(k^2+a_1)}\right) \\ + k_x \omega \Omega \left( \begin{aligned}&{} -2{\alpha _{{u_y}}} \bigg (\frac{\beta _1 \Omega }{\omega } +\frac{k_z^2}{\omega }\bigg )+\frac{\beta _1\Omega \alpha _{{u_x}}}{\omega ^2} +\frac{2\Omega \beta _{1}^2}{k_x\omega ^3(k^2+a_1)} +\frac{k_z \beta _1\Omega \alpha _{{u_z}}}{k_x \omega ^2}\end{aligned}\right) \\ + k_z (\omega ^2-\Omega ^2)\left( \begin{aligned}&{} -{\alpha _{{u_z}}} \bigg (\frac{2\beta _1}{\omega }+ \frac{k_z^2}{\omega }\bigg )+\frac{2k_z\beta _{1}}{\omega ^2(k^2+a_1)} +\frac{k_x k_z\alpha _{{u_x}}}{\omega }\end{aligned}\right) \\ + \omega ^2 (\omega ^2-\Omega ^2)\left( {2a_2 \alpha _\phi }- \dfrac{3a_3}{(k^2+a_1)^2} \right) \end{array}\right] ,\end{aligned}$$
(C.5)
$$\begin{aligned} \gamma {_4}= & {} -\frac{(\omega ^2-\Omega ^2)}{\gamma {_{\tau }}} (2k_z \omega {v_{gz}}-1 +2a_2\omega ^2). \end{aligned}$$
(C.6)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganyou, S., Panguetna, C.S., Fewo, S.I. et al. Two-dimensional dynamics of ion-acoustic waves in a magnetised electronegative plasma. Pramana - J Phys 98, 30 (2024). https://doi.org/10.1007/s12043-023-02704-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02704-z

Keywords

PACS

Navigation