Skip to main content
Log in

Thermal Properties of NaF–KF and NaF–KF–MgF2 Molten eutectic Mixtures: Experiment and Simulation

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Molten fluoride salts are under development for use as fuel coolant and thermal storage in industrial nuclear energy production. This study focuses on the experimental and molecular dynamic investigation of thermal conductivity and ion diffusion in the eutectic molten salts of NaF–KF and NaF–KF–MgF2. Experimental and calculated data demonstrate that the temperature-dependent thermal conductivity can be accurately represented as a decaying linear function for both melts. The significant diffusion coefficient of fluorine ions in the NaF–KF molten system can be attributed to the considerable number of Coulomb repulsions among the abundant negative ions in the irregular system. The findings of this study provide insights into the behavior of NaF–KF and NaF–KF–MgF2 molten salt mixtures under operating conditions in high-temperature power plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Mignacca, G. Locatelli, Prog. Nucl. Energ. 129, 103503 (2020). https://doi.org/10.1016/j.pnucene.2020.103503

    Article  Google Scholar 

  2. R. Gallagher, C. Agca, N. Russell, J. Mc Murray, N. Bull Fzell, J. Chem. Eng. Data. 67, 1406 (2022). https://doi.org/10.1021/acs.jced.2c00081

    Article  Google Scholar 

  3. R. Freile, M. Kimber, E.P.J. Nucl, Sci. Technol. 5, 16 (2019). https://doi.org/10.1051/epjn/2019027

    Article  Google Scholar 

  4. S. Robertson, R. Wiser, W. Yang, S. Kang et al., J. Appl. Phys. 131, 225102 (2022). https://doi.org/10.1063/5.0088059

    Article  ADS  Google Scholar 

  5. R. Serrano-Lopez, J. Fradera, S. Cuesta-López, Chem. Eng. Proc.: Proc. Intensific. 73, 87 (2013). https://doi.org/10.1016/j.cep.2013.07.008

    Article  Google Scholar 

  6. R.C. Gallagher, A. Birri, N.G. Russell, A.-T. Phan, A.E. Gheribi, J. Mol. Liq. 361, 119151 (2022). https://doi.org/10.1016/j.molliq.2022.119151

    Article  Google Scholar 

  7. A. Gheribi, P. Chartrand, J. Chem. Phys. 144, 084506 (2016). https://doi.org/10.1063/1.4942197

    Article  ADS  Google Scholar 

  8. A. Rudenko, A. Redkin, E. Il’ina, S. Pershina, P. Mushnikov, Materials. 15, 5603 (2022). https://doi.org/10.3390/ma15165603

    Article  ADS  Google Scholar 

  9. N. Galamba, C.A. Nieto de Castro, J. Ely, J. Chem. Phys. 120, 8676 (2004). https://doi.org/10.1063/1.1691735

    Article  ADS  Google Scholar 

  10. Y. Ishii, K. Sato, M. Salanne, P. Madden, N. Ohtori, J. Phys. Chem. B 118, 3385 (2014). https://doi.org/10.1021/jp411781n

    Article  Google Scholar 

  11. M. Smirnov, V. Khokhlov, E. Filatov, Electrochim. Acta 32, 1019 (1987). https://doi.org/10.1016/0013-4686(87)90027-2

    Article  Google Scholar 

  12. B. Merritt, M. Seneca, B. Wright, N. Cahill et al., Int. J. Thermophys. 43, 149 (2022). https://doi.org/10.1007/s10765-022-03073-2

    Article  ADS  Google Scholar 

  13. B. Mortazavi, E.V. Podryabinkin, I.S. Novikov, T. Rabczuk, X. Zhuang, A.V. Shapeev, Comput. Phys. Commun. 258, 107583 (2021). https://doi.org/10.1016/j.cpc.2020.107583

    Article  Google Scholar 

  14. N. Ohtori, T. Oono, K. Takase, J. Chem. Phys. 130, 044505 (2009). https://doi.org/10.1063/1.3064588

    Article  ADS  Google Scholar 

  15. S. Stankus, I. Savchenko, Thermophys. Aeromech. 16, 585 (2009). https://doi.org/10.1134/S0869864309040076

    Article  ADS  Google Scholar 

  16. A. Agazhanov, R. Abdullaev, D. Samoshkin, S. Stankus, Russ. J. Phys. Chem. A 95, 1291 (2021). https://doi.org/10.1134/S0036024421070037

    Article  Google Scholar 

  17. A. Redkin, E. Ili’na, S. Pershina, P. Mushnikov et al., Thermo. 2, 107 (2022). https://doi.org/10.3390/thermo2030010

    Article  Google Scholar 

  18. A. Redkin, I. Korzun, T. Yaroslavtseva, O. Reznitskikh, Y. Zaikov, J. Therm. Anal. Calorim.. 128, 621 (2017). https://doi.org/10.1007/s10973-016-5869-9

    Article  Google Scholar 

  19. J. Holm, Acta Chem. Scand. 19, 638 (1965). https://doi.org/10.3891/acta.chem.scand.19-0638

    Article  Google Scholar 

  20. P. Chartand, A.D. Pelton, Metall. Mater. Trans. 32(6), 1385 (2001). https://doi.org/10.1007/s11661-001-0228-1

    Article  Google Scholar 

  21. M.S. Badar, S. Shamsi, J. Ahmed, M.A. Alam. Molecular dynamics simulations: Concept, methods, and applications. In: Rezaei N, editor. Transdisciplinarity. Vol. 5. Switzerland: Springer. 2022. pp. 131–151. https://doi.org/10.1007/978-3-030-94651-7_7

  22. A. Galashev, K. Ivanichkina, Chem. Phys. 555, 111455 (2022). https://doi.org/10.1016/j.chemphys.2022.111455

    Article  Google Scholar 

  23. K. Ivanichkina, A. Galashev, A. Isakov, Appl. Surf. Sci. 561, 149959 (2021). https://doi.org/10.1016/j.apsusc.2021.149959

    Article  Google Scholar 

  24. D. Evans, B. Holian, J. Chem. Phys. 84, 4069 (1985). https://doi.org/10.1063/1.449071

    Article  ADS  Google Scholar 

  25. A. Galashev, O. Rakhmanova, K. Abramova, K. Katin et al., J. Phys. Chem. B 127, 1197 (2023). https://doi.org/10.1021/acs.jpcb.2c06915

    Article  Google Scholar 

  26. S. Plimpton, J. Comp. Phys. 117, 1 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  ADS  Google Scholar 

  27. G.J. Janz, R.P.T. Tomkins. Physical properties data compilations relevant to energy storage. IV. Molten salts: Data on additional single and multicomponent salt systems. Washington: National Bureau of Standards; 1981.

  28. A. Solano, A. Clark, K. Detrick, M. Memmott, S. Nickerson, J. Nucl. Mater. 557, 153248 (2021). https://doi.org/10.1016/j.jnucmat.2021.153248

    Article  Google Scholar 

  29. H. Yang, R.C. Gallagher, A.-T. Phan, P. Chartrand, A. Gheribi, Materialstoday Energy. 38, 101441 (2023). https://doi.org/10.1016/j.mtener.2023.101441

    Article  Google Scholar 

  30. R. Digulio, A. Teja, Int. J. Thermophys. 13, 855–871 (1992). https://doi.org/10.1007/BF00503912

    Article  ADS  Google Scholar 

  31. N. Nakazawa, Y. Nagasaka, A. Nagashima, Int. J. Thermophys. 13, 753 (1992). https://doi.org/10.1007/BF00503904

    Article  ADS  Google Scholar 

  32. N. Nakazawa, Y. Nagasaka, A. Nagashima, Int. J. Thermophys. 13, 763 (1992). https://doi.org/10.1007/BF00503905

    Article  ADS  Google Scholar 

  33. N. Nakazawa, Y. Nagasaka, A. Nagashima, Int. J. Thermophys. 13, 555 (1992). https://doi.org/10.1007/BF00501941

    Article  ADS  Google Scholar 

  34. N. Ohtory, T. Oono, K. Takase, J. Chem. Phys. 130, 044505 (2009). https://doi.org/10.1063/1.3064588

    Article  ADS  Google Scholar 

  35. A. Redkin, Y. Zaikov, O. Tkacheva, S. Kumkov, Ionics 22, 143 (2016). https://doi.org/10.1007/s11581-015-1592-y

    Article  Google Scholar 

  36. A. Galashev, Nucl. Eng. Technol. 55, 1324 (2023). https://doi.org/10.1016/j.net.2022.12.029

    Article  Google Scholar 

Download references

Funding

The study was funded by the Scientific Research Program of the Government of Russian Federation, 122020100205-5 (FUME-2022-0005).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [AAR] and [AVR]; Data Curation: [AVR]; Formal Analysis: [AVR], [AAR], [KAA], [ORR], [EAI], and [SVP]; Funding Acquisition: [YPZ]; Investigation: [AVR], [AAR], [KAA], [ORR], [EAI], and [SVP]; Methodology: [EAI] and [SVP]; Project Administration: [YPZ]; Software: [AVR]; Supervision: [AYG] and [YPZ]; Validation: [ORR] and [KAA]; Visualization: [AVR], [KAA], and [ORR]; Writing—Original Draft Preparation: [AAR], [AVR], [AYG], [KAA], and [ORR]; Writing—Review & Editing: [AAR], [AVR], [AYG], [KAA], and [ORR].

Corresponding author

Correspondence to O. R. Rakhmanova.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudenko, A.V., Redkin, A.A., Galashev, A.Y. et al. Thermal Properties of NaF–KF and NaF–KF–MgF2 Molten eutectic Mixtures: Experiment and Simulation. Int J Thermophys 45, 47 (2024). https://doi.org/10.1007/s10765-024-03335-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-024-03335-1

Keywords

Navigation