Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 26, 2024

DyIrSn and the Lu3Co2In4-type stannides Sm3Rh2Sn4 and RE 3Ir2Sn4 (RE = Y, Sm, Gd–Tm, Lu)

  • Lars Schumacher , Aylin Koldemir and Rainer Pöttgen EMAIL logo

Abstract

The Lu3Co2In4-type stannides RE 3Ir2Sn4 (RE = Y, Sm, Gd–Tm, Lu) were synthesized from the elements by arc-melting and subsequent annealing sequences in sealed silica ampoules. For a more comprehensive phase analytical study, the isotypic stannide Sm3Rh2Sn4 and the ZrNiAl-type stannides DyIrSn and LT-YIrSn were also obtained. The polycrystalline samples were characterized through their X-ray powder patterns. The structures of DyIrSn and Gd3Ir2.63(2)Sn3.37(2) (ZrNiAl type, space group P6‾2m), Sm3Ir2.52(2)Sn3.48(1), Gd3Ir2.49(1)Sn3.51(1) and Tm3Ir2.20(3)Sn3.80(3) (Lu3Co2In4 type, space group P6‾) were refined from single-crystal X-ray diffractometer data, revealing residual Ir/Sn disorder in the low-symmetry variants. The RE 3Ir2Sn4 stannides are derived from the equiatomic stannides REIrSn (≍RE 3Rh3Sn3) by partial Ir/Sn substitution. The symmetry reduction from space group P6‾2m to P6‾ is forced by the Ir/Sn ordering within the RE 6 trigonal prisms. The new Sn2 position shows the rare motif of a trigonal planar tin coordination with 289 pm Sn2–Sn1 distances (data for Gd3Ir2.49(1)Sn3.51(1)). 119Sn Mössbauer spectra confirm the two crystallographically independent tin sites in Tm3Ir2Sn4 and the structural disorder in Gd3Ir2Sn4.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgments

We thank Dipl.-Ing. J. Kösters for the intensity data collections and M. Sc. C. Paulsen for the EDX analyses.

  1. Research ethics: Not applicable.

  2. Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: This research was funded by Universität Münster.

  5. Data availability: Data is available from the corresponding author on well-founded request.

References

1. Fornasini, M. L., Merlo, F. J. Alloys Compd. 1995, 219, 63–68; https://doi.org/10.1016/0925-8388(94)05010-4.Search in Google Scholar

2. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23). ASM International®: Materials Park: Ohio (USA), 2022.Search in Google Scholar

3. Eyring, L., GschneidnerJr.K. A., Pecharsky, V., Bünzli, J.-C., Kauzlarich, S., Eds. Handbook on the Physics and Chemistry of Rare Earths. North-Holland, Elsevier: Amsterdam, Vol. 1–64, 1978–2023.Search in Google Scholar

4. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed; Springer: Berlin, 1993.10.1007/978-3-662-10641-9Search in Google Scholar

5. Szytuła, A., Leciejewicz, J. Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics; CRC Press: Boca Raton, 1994.Search in Google Scholar

6. Gupta, S., Suresh, K. G. J. Alloys Compd. 2015, 618, 562–606; https://doi.org/10.1016/j.jallcom.2014.08.079.Search in Google Scholar

7. Pöttgen, R., Chevalier, B. Z. Naturforsch. 2015, 70b, 289–304.10.1515/znb-2015-0018Search in Google Scholar

8. Pöttgen, R., Janka, O., Chevalier, B. Z. Naturforsch. 2016, 71b, 165–191.10.1515/znb-2016-0013Search in Google Scholar

9. Janka, O., Niehaus, O., Pöttgen, R., Chevalier, B. Z. Naturforsch. 2016, 71b, 737–764.10.1515/znb-2016-0101Search in Google Scholar

10. Shoemaker, C. B., Shoemaker, D. P. Acta Crystallogr. 1965, 18, 900–905; https://doi.org/10.1107/s0365110x65002189.Search in Google Scholar

11. Krypyakevich, P. I., Markiv, V.Ya., Melnyk, E. V. Dopov. Akad. Nauk. Ukr. RSR, Ser. A 1967, 750–753.Search in Google Scholar

12. Dwight, A. E., Mueller, M. H., Conner, R. A.Jr., Downey, J. W., Knott, H. Trans. Met. Soc. AIME 1968, 242, 2075–2080.Search in Google Scholar

13. Zumdick, M. F., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 1999, 54b, 45–53.10.1515/znb-1999-0111Search in Google Scholar

14. Jeitschko, W. Acta Crystallogr. 1970, B26, 815–822.10.1107/S0567740870003163Search in Google Scholar

15. Zumdick, M. F., Pöttgen, R. Z. Kristallogr. 1999, 214, 90–97.10.1524/zkri.1999.214.2.90Search in Google Scholar

16. Gulay, N. L., Hoffmann, R.-D., Kösters, J., Kalychak, Ya. M., Seidel, S., Pöttgen, R. Z. Kristallogr. 2021, 236, 81–91; https://doi.org/10.1515/zkri-2021-2007.Search in Google Scholar

17. Engelbert, S., Hoffmann, R.-D., Kösters, J., Klenner, S., Pöttgen, R. Z. Kristallogr. 2021, 236, 93–104; https://doi.org/10.1515/zkri-2021-2008.Search in Google Scholar

18. Zaremba, V. I., Kalychak, Ya. M., Zavalii, P. Y., Sobolev, A. N. Dopov. Akad. Nauk. Ukr. RSR, Ser. B 1989, 2, 37–39.Search in Google Scholar

19. Lukachuk, M., Zaremba, V. I., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 2004, 59b, 182–189.Search in Google Scholar

20. Rodewald, U.Ch., Lukachuk, M., Hoffmann, R.-D., Pöttgen, R. Monatsh. Chem. 2005, 136, 1985–1991; https://doi.org/10.1007/s00706-005-0375-y.Search in Google Scholar

21. Heying, B., Niehaus, O., Rodewald, U.Ch., Pöttgen, R. Z. Naturforsch. 2016, 71b, 1261–1267.10.1515/znb-2016-0167Search in Google Scholar

22. Stein, S., Heletta, L., Pöttgen, R. Z. Naturforsch. 2018, 73b, 765–772.10.1515/znb-2018-0091Search in Google Scholar

23. Baran, S., Tyvanchuk, Yu., Kalychak, Ya., Szytuła, A. Phase Trans. 2018, 91, 111–117; https://doi.org/10.1080/01411594.2017.1402178.Search in Google Scholar

24. Gulay, N., Tyvanchuk, Yu., Daszkiewicz, M., Stel’makhovych, B., Kalychak, Ya. Z. Naturforsch. 2019, 74b, 289–295.10.1515/znb-2018-0275Search in Google Scholar

25. Gulay, N. L., Kalychak, Ya. M., Pöttgen, R. Z. Naturforsch. 2021, 76b, 361–367.Search in Google Scholar

26. Schumacher, L., Engelbert, S., Klenner, S., Matar, S. F., Pöttgen, R. Z. Kristallogr. 2022, 237, 51–59; https://doi.org/10.1515/zkri-2022-0007.Search in Google Scholar

27. Pöttgen, R., Gulden, Th., Simon, A. GIT Fachz. 1999, 43, 133–136.Search in Google Scholar

28. Dwight, A. E., Downey, J. W., Conner, R. A.Jr. Trans. Met. Soc. AIME 1966, 236, 1509–1510.Search in Google Scholar

29. Höting, C., Eckert, H., Haarmann, F., Winter, F., Pöttgen, R. Dalton Trans. 2014, 43, 7860–7867; https://doi.org/10.1039/c4dt00161c.Search in Google Scholar PubMed

30. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar

31. Salamakha, P., Sologub, O., Yakinthos, J. K., Routsi, Ch. D. J. Alloys Compd. 1998, 265, L1–L2.Search in Google Scholar

32. Dwight, A. E., Harper, W. C., Kimball, C. W. J. Less-Common Met. 1973, 30, 1–8; https://doi.org/10.1016/0022-5088(73)90002-7.Search in Google Scholar

33. Long, G. J., Cranshaw, T. E., Longworth, G. Moessbauer Eff. Ref. Data J. 1983, 6, 42–49.Search in Google Scholar

34. Brand, R. A. WinNormos for Igor7 (Version for Igor 7.010 or above: 01/03/2020); Universität Duisburg: Duisburg (Germany), 2020.Search in Google Scholar

35. Palatinus, L. Acta Crystallogr. 2013, B69, 1–16.10.1107/S0108768112051361Search in Google Scholar PubMed

36. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

37. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Search in Google Scholar

38. Petříček, V., Palatinus, L., Plášil, J., Dušek, M. Z. Kristallogr. 2023, 238, 271–282; https://doi.org/10.1515/zkri-2023-0005.Search in Google Scholar

39. Flack, H. D., Bernadinelli, G. Acta Crystallogr. 1999, A55, 908–915.10.1107/S0108767399004262Search in Google Scholar PubMed

40. Flack, H. D., Bernadinelli, G. J. Appl. Crystallogr. 2000, 33, 1143–1148; https://doi.org/10.1107/s0021889800007184.Search in Google Scholar

41. Parsons, S., Flack, H. D., Wagner, T. Acta Crystallogr. 2013, B69, 249–259.10.1107/S2052519213010014Search in Google Scholar PubMed PubMed Central

42. Chevalier, B., Sebastian, C. P., Pöttgen, R. Solid State Sci. 2006, 8, 1000–1008; https://doi.org/10.1016/j.solidstatesciences.2006.02.047.Search in Google Scholar

43. Skolozdra, R. V. Stannides of rare-earth and transition metals. In Handbook on the Physics and Chemistry of Rare Earths; GschneidnerJr.K. A., Eyring, L., Eds. Elsevier Science: Amsterdam, Vol. 24, 1997; p. 399.10.1016/S0168-1273(97)24009-2Search in Google Scholar

44. Pöttgen, R. Z. Naturforsch. 2006, 61b, 677–698.10.1515/znb-2006-0607Search in Google Scholar

45. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

46. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar

47. Katoh, K., Terui, G., Niide, Y., Aoki, H., Ochiai, A. Physica B 1999, 259–261, 161–162; https://doi.org/10.1016/s0921-4526(98)00829-1.Search in Google Scholar

48. Mishra, R., Pöttgen, R., Hoffmann, R.-D., Trill, H., Mosel, B. D., Piotrowski, H., Zumdick, M. F. Z. Naturforsch. 2001, 56b, 589–597.10.1515/znb-2001-0705Search in Google Scholar

Received: 2024-01-11
Accepted: 2024-01-19
Published Online: 2024-02-26
Published in Print: 2024-02-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2024-0004/html
Scroll to top button