Skip to main content
Log in

Quasinormal modes of anyons

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We derive the quasinormal modes of anyons for \((2+1)\)-dimensional Bañados, Teitelboim, and Zanelli (BTZ) and analogue black holes and discuss potential experiments to measure these modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No data associated in the manuscript.

References

  1. Giddings, S.B.: The black hole information paradox (1995). https://doi.org/10.48550/arXiv.hep-th/9508151

  2. Mathur, S.D.: The Fuzzball proposal for black holes: an elementary review. Fortsch. Phys. 53, 793–827 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  3. Almheiri, A., Marolf, D., Polchinski, J., Stanford, D., Sully, J.: An apologia for firewalls. JHEP 09, 018 (2013)

    Article  ADS  Google Scholar 

  4. Braunstein, S.L., Das, S., Wang, Z.-W.: Information recovery from evaporating black holes. Int. J. Mod. Phys. D 30(09), 2150069 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  5. Nakamura, T., Nakano, H., Tanaka, T.: Detecting quasinormal modes of binary black hole mergers with second-generation gravitational-wave detectors. Phys. Rev. D 93, 044048 (2016)

    Article  ADS  Google Scholar 

  6. Ota, I., Chirenti, C.: Black hole spectroscopy horizons for current and future gravitational wave detectors. Phys. Rev. D 105, 044015 (2022)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Isi, M., Giesler, M., Farr, W.M., Scheel, M.A., Teukolsky, S.A.: Testing the no-hair theorem with gw150914. Phys. Rev. Lett. 123, 111102 (2019)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Chandrasekhar, S., Detweiler, S.L.: The quasi-normal modes of the Schwarzschild black hole. Proc. R. Soc. Lond. A 344, 441–452 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  9. Ferrari, V., Gualtieri, L.: Quasi-normal modes and gravitational wave astronomy. Gen. Relativ. Gravit. 40, 945–970 (2008)

    Article  ADS  Google Scholar 

  10. Panotopoulos, G.: Quasinormal modes of the BTZ black hole under scalar perturbations with a non-minimal coupling: Exact spectrum. Gen. Relativ. Gravit. 50(6), 59 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  11. Churilova, M.S.: Quasinormal modes of the Dirac field in the novel 4d Einstein–Gauss–Bonnet gravity (2020). https://doi.org/10.48550/arXiv.2004.00513

  12. Li, X., Zhao, S.-P.: Quasinormal modes of a scalar and an electromagnetic field in Finslerian–Schwarzschild spacetime. Phys. Rev. D 101, 124012 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  13. Zhang, H., Zhou, W.: Quasinormal modes for Weyl neutrino field in RN black holes. Class. Quantum Gravi. 21, 917–925 (2004)

    Article  ADS  CAS  Google Scholar 

  14. Bartolomei, H., Kumar, M., Bisognin, R., Marguerite, A., Berroir, J.-M., Bocquillon, E., Plaçais, B., Cavanna, A., Dong, Q., Gennser, U., Jin, Y., Fève, G.: Fractional statistics in anyon collisions. Science 368(6487), 173–177 (2020)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  15. Barcelo, C., Liberati, S., Visser, M.: Analogue gravity. Living Rev. Rel. 8, 12 (2005)

    Article  Google Scholar 

  16. Marino, F.: Acoustic black holes in a two-dimensional “photon fluid’’. Phys. Rev. A 78, 063804 (2008)

    Article  ADS  Google Scholar 

  17. Vocke, D., Maitland, C., Prain, A., Biancalana, F., Marino, F., Faccio, D.: Rotating black hole geometries in a two-dimensional photon superfluid. Optica 5, 09 (2017)

    Google Scholar 

  18. Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  19. Field, B., Simula, T.: Introduction to topological quantum computation with non-abelian anyons. Quantum Sci. Technol. 3, 045004 (2018)

    Article  ADS  Google Scholar 

  20. Nakamura, J., Liang, S., Gardner, G.C., Manfra, M.J.: Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020)

    Article  CAS  Google Scholar 

  21. Vishnulal, C., Basak, S., Das, S.: Hawking radiation of anyons. Phys. Rev. D 104, 104011 (2021)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  22. Aghaei Abchouyeh, M., Mirza, B., Karimi Takrami, M., Younesizadeh, Y.: Anyon black holes. Phys. Lett. B 780, 240–245 (2018)

    Article  ADS  CAS  Google Scholar 

  23. Luo, Z.-X., Sun, H.-Y.: Topological entanglement entropy in Euclidean AdS\(_{3}\) via surgery. JHEP 12, 116 (2017)

    Article  ADS  Google Scholar 

  24. Konoplya, R.A., Zhidenko, A.: Quasinormal modes of massive fermions in Kerr spacetime: long-lived modes and the fine structure. Phys. Rev. D 97, 084034 (2018)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  25. Rao, J., Tiwari, S.: Bosonic und fermionic quasinormal modes of rotating black holes through ads/cft (2022). https://doi.org/10.48550/arXiv.2210.14973

  26. Prasia, P., Kuriakose, V.C.: Quasinormal modes and thermodynamics of linearly charged BTZ black holes in massive gravity in (anti) de sitter space–time. Eur. Phys. J. C 77 (2017). https://doi.org/10.1140/epjc/s10052-016-4591-x

  27. Sen, D.: An introduction to anyons (1993). https://doi.org/10.1007/BF02908105

  28. Bañados, M., Teitelboim, C., Zanelli, J.: Black hole in three-dimensional spacetime. Phys. Rev. Lett. 69, 1849–1851 (1992)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  29. Cardoso, V., Lemos, J.P.S.: Scalar, electromagnetic, and Weyl perturbations of BTZ black holes: quasinormal modes. Phys. Rev. D 63, 124015 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  30. Vishveshwara, C.V.: Stability of the schwarzschild metric. Phys. Rev. D 1, 2870–2879 (1970)

    Article  ADS  Google Scholar 

  31. Birmingham, D.: Choptuik scaling and quasinormal modes in the anti-de sitter space/conformal-field theory correspondence. Phys. Rev. D 64, 064024 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  32. Rao, S.: An anyon primer. arXiv High Energy Physics—Theory (1992). https://doi.org/10.48550/arXiv.hep-th/9209066

  33. Abramowitz, M.: Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables. Dover Publications Inc, USA (1974)

    Google Scholar 

  34. Daghigh, R.G., Green, M.D.: Highly real, highly damped, and other asymptotic quasinormal modes of schwarzschild-anti de sitter black holes. Class. Quantam Gravit. 26, 125017 (2009)

    Article  ADS  Google Scholar 

  35. Cardoso, V., Khanna, G.: Black holes in anti–de Sitter spacetime: quasinormal modes, tails, and flat spacetime. Phys. Rev. D 91(2), 024031 (2015)

    Article  ADS  Google Scholar 

  36. Torres, T., Patrick, S., Richartz, M., Weinfurtner, S.: Quasinormal mode oscillations in an analogue black hole experiment. Phys. Rev. Lett. 125, 011301 (2020)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  37. Schutz, B.F., Will, C.M.: Black hole normal modes: a semianalytic approach. Astrophys. J. Lett. 291, L33–L36 (1985)

    Article  ADS  Google Scholar 

  38. Regge, T., Wheeler, J.A.: Stability of a Schwarzschild singularity. Phys. Rev. 108, 1063–1069 (1957)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada. V.C was supported by research fellowships from the Council of Scientific and Industrial Research, India.

Author information

Authors and Affiliations

Authors

Contributions

(1) Vishnulal C. (2) Dr. Saurya Das. (3) Dr Soumen Basak.

Corresponding author

Correspondence to Vishnulal Cheriyodathillathu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheriyodathillathu, V., Das, S. & Basak, S. Quasinormal modes of anyons. Gen Relativ Gravit 56, 33 (2024). https://doi.org/10.1007/s10714-024-03217-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-024-03217-9

Keywords

Navigation