Skip to main content
Log in

The Wave Maps Equation and Brownian Paths

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss the \((1+1)\)-dimensional wave maps equation with values in a compact Riemannian manifold . Motivated by the Gibbs measure problem, we consider Brownian paths on the manifold as initial data. Our main theorem is the probabilistic local well-posedness of the associated initial value problem. The analysis in this setting combines analytic, geometric, and probabilistic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

This article does not have any external supporting data.

Notes

  1. To be precise, [AD99] constructed the Wiener measure on the compact domain [0, 1] instead of \({\mathbb {R}}\).

  2. In dimension \(d=1\), the renormalization in (1.7) is not necessary.

  3. In [Bou96], the contraction argument is actually performed at a regularity strictly between 0 and 1/2, but a minor variant yields the optimal regularity \(1/2-\) for \(\psi \) (cf. [CLS21, DNY19]).

  4. For technical reasons, we will later write the linear evolution as \(\phi _{\text {lin} }=\theta (\phi ^+(u)+\phi ^{-}(v))\), where \(\theta >0\) is a small parameter. Due to this, we will need to adjust the definitions of \(\phi ^+\) and \(\phi ^-\), see e.g. (3.2). In the introduction, we ignore this technicality.

  5. When \(N>M\), the roles of \(\phi ^+\) and \(\phi ^-\) should be reversed.

  6. While the dual space of \(L^\infty _x\) is not \(L^1_x\), one can still characterize the \(L^\infty _x\)-norm as a supremum over integrals against \(L^1_x\)-normalized functions. This statement generalizes to our functions spaces and is sufficient for the duality argument used here.

  7. While it is customary to write \(B_x\) or \(W_x\) for Brownian motions indexed by the variable x, we use the notation B(x), respectively W(x), which we consider to be more in line with the notation in the rest of the paper.

  8. This conclusion can be obtained from a slight variant of the proof of Lemma 2.30. We emphasize that the convergence (2.100) in the statement of Lemma 2.30 is stronger than what is needed to conclude the convergence of the high-high paraproducts in \(C^{2\alpha -1}\).

  9. Specifically, in the notation of the proof of [GIP15, Theorem 3.3] we have \(C_F \simeq \tau ^{\frac{1}{2}} (\Vert P_{ext}\Vert _{C^2_b} + \Vert P_{ext}\Vert _{C^2_b}^2)\) and \(C_\xi \lesssim \tau ^{-c}\). To conclude the bounds (2.115) we have to impose \(C_F C_\xi \ll 1\).

  10. Since B and \(\bar{W}\) are independent and hence have vanishing cross-variation, the Itô and Stratonovich integrals are identical in this case.

  11. This is the shortest argument which yields an acceptable contribution. By using frequency-support considerations for \(A_M^-\) and \(A_N^+\), we can obtain better decay in M and N, and thus this term is less serious than our argument suggests.

  12. While \(H_M^+\) is not necessarily \(A_M^+\), the same argument applies.

References

  1. Aizenman, M., Duminil-Copin, H.: Marginal triviality of the scaling limits of critical 4D Ising and \(\phi _4^4\) models. Ann. Math. (2) 194(1), 163–235 (2021)

    MathSciNet  Google Scholar 

  2. Andersson, L., Driver, B.K.: Finite-dimensional approximations to Wiener measure and path integral formulas on manifolds. J. Funct. Anal. 165(2), 430–498 (1999)

    MathSciNet  Google Scholar 

  3. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften, vol. 343. Springer, Heidelberg (2011)

    Google Scholar 

  4. Bényi, A., Oh, T., Pocovnicu, O.: On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on \({\mathbb{R} }^d\), \(d \ge 3\). Trans. Am. Math. Soc. Ser. B 2, 1–50 (2015)

    Google Scholar 

  5. Bényi, A., Oh, T., Pocovnicu, O.: On the probabilistic Cauchy theory for nonlinear dispersive PDEs. In: Landscapes of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis, pp. 1–32. Birkhäuser/Springer, Cham (2019)

    Google Scholar 

  6. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal. 3(2), 107–156 (1993)

    MathSciNet  Google Scholar 

  7. Bourgain, J.: Periodic nonlinear Schrödinger equation and invariant measures. Commun. Math. Phys. 166(1), 1–26 (1994)

    ADS  Google Scholar 

  8. Bourgain, J.: Invariant measures for the \(2\)D-defocusing nonlinear Schrödinger equation. Commun. Math. Phys. 176(2), 421–445 (1996)

    ADS  Google Scholar 

  9. Bringmann, B.: Almost sure scattering for the energy critical nonlinear wave equation. arXiv:1812.10187. To appear in Am. J. Math. (2018)

  10. Bringmann, B.: Invariant Gibbs measures for the three-dimensional wave equation with a Hartree nonlinearity II: dynamics. arXiv:2009.04616 (2020)

  11. Bringmann, B.: Almost sure local well-posedness for a derivative nonlinear wave equation. Int. Math. Res. Not. IMRN 2021(11), 8657–8697 (2021)

    MathSciNet  Google Scholar 

  12. Bringmann, B., Deng, Y., Nahmod, A. R., Yue, H.: Invariant Gibbs measures for the three dimensional cubic nonlinear wave equation. arXiv:2205.03893 (2022)

  13. Bruned, Y., Gabriel, F., Hairer, M., Zambotti, L.: Geometric stochastic heat equations. J. Am. Math. Soc. 35(1), 1–80 (2021)

    MathSciNet  Google Scholar 

  14. Brzeźniak, Z., Jendrej, J.: Statistical mechanics of the wave maps equation in dimension 1+1. arXiv:2206.13605 (2022)

  15. Brzeźniak, Z., Rana, N.: Low regularity solutions to the stochastic geometric wave equation driven by a fractional Brownian sheet. arXiv:2006.07740 (2020)

  16. Burq, N., Tzvetkov, N.: Random data Cauchy theory for supercritical wave equations. I. Local theory. Invent. Math. 173(3), 449–475 (2008)

    ADS  MathSciNet  Google Scholar 

  17. Burq, N., Tzvetkov, N.: Random data Cauchy theory for supercritical wave equations. II. A global existence result. Invent. Math. 173(3), 477–496 (2008)

    ADS  MathSciNet  Google Scholar 

  18. Cannizzaro, G., Matetski, K.: Space-time discrete KPZ equation. Commun. Math. Phys. 358(2), 521–588 (2018)

    ADS  MathSciNet  Google Scholar 

  19. Chandra, A., Chevyrev, I., Hairer, M., Shen, H.: Langevin dynamic for the 2D Yang-Mills measure. arXiv:2006.04987 (2020)

  20. Chandra, A., Chevyrev, I., Hairer, M., Shen, H.: Stochastic quantisation of Yang-Mills-Higgs in 3D. arXiv:2201.03487 (2022)

  21. Collot, C., Germain, P.: On the derivation of the homogeneous kinetic wave equation. arXiv:1912.10368 (2019)

  22. Compaan, E., Lucà, R., Staffilani, G.: Pointwise convergence of the Schrödinger flow. Int. Math. Res. Not. IMRN 2021(1), 599–650 (2021)

    Google Scholar 

  23. Da Prato, G., Debussche, A.: Two-dimensional Navier-Stokes equations driven by a space-time white noise. J. Funct. Anal. 196(1), 180–210 (2002)

    MathSciNet  Google Scholar 

  24. Deng, Y., Nahmod, A., Yue, H.: Invariant Gibbs measures and global strong solutions for nonlinear Schrödinger equations in dimension two. arXiv:1910.08492 (2019)

  25. Deng, Y., Nahmod, A., Yue, H.: Random tensors, propagation of randomness, and nonlinear dispersive equations. arXiv:2006.09285 (2020)

  26. Deng, Y., Hani, Z.: On the derivation of the wave kinetic equation for NLS. arXiv:1912.09518 (2019)

  27. Deng, Y., Hani, Z.: Full derivation of the wave kinetic equation. arXiv:2104.11204 (2021)

  28. Deng, Y., Nahmod, A.R., Yue, H.: Invariant Gibbs measure and global strong solutions for the Hartree NLS equation in dimension three. J. Math. Phys. 62(3), 39 (2021)

  29. Deng, Y., Tzvetkov, N., Visciglia, N.: Invariant measures and long time behaviour for the Benjamin–Ono equation III. Commun. Math. Phys. 339(3), 815–857 (2015)

    ADS  MathSciNet  Google Scholar 

  30. Dodson, B., Lührmann, J., Mendelson, D.: Almost sure scattering for the 4D energy-critical defocusing nonlinear wave equation with radial data. Am. J. Math. 142(2), 475–504 (2020)

    MathSciNet  Google Scholar 

  31. Erhard, D., Hairer, M.: Discretisation of regularity structures. Ann. Inst. Henri Poincaré Probab. Stat. 55(4), 2209–2248 (2019)

    MathSciNet  Google Scholar 

  32. Evans, L.C.: An Introduction to Stochastic Differential Equations. American Mathematical Society, Providence, RI (2013)

    Google Scholar 

  33. Forlano, J.: Almost sure global well posedness for the BBM equation with infinite \(L^2\) initial data. Discret. Contin. Dyn. Syst. 40(1), 267–318 (2020)

    MathSciNet  Google Scholar 

  34. Forlano, J., Okamoto, M.: A remark on norm inflation for nonlinear wave equations. Dyn. Partial Differ. Equ. 17(4), 361–381 (2020)

    MathSciNet  Google Scholar 

  35. Funaki, T., Hoshino, M.: A coupled KPZ equation, its two types of approximations and existence of global solutions. J. Funct. Anal. 273(3), 1165–1204 (2017)

    MathSciNet  Google Scholar 

  36. Glimm, J., Jaffe, A.: Quantum Physics, second edition Springer-Verlag, New York (1987). (A functional integral point of view)

    Google Scholar 

  37. Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. Forum Math. Pi 3, e6 (2015)

    MathSciNet  Google Scholar 

  38. Gubinelli, M., Koch, H., Oh, T.: Paracontrolled approach to the three-dimensional stochastic nonlinear wave equation with quadratic nonlinearity. arXiv:1811.07808. To appear in J. Eur. Math. Soc. (2018)

  39. Gubinelli, M., Hofmanová, M.: A PDE construction of the Euclidean \(\phi _3^4\) quantum field theory. Commun. Math. Phys. 384(1), 1–75 (2021)

    ADS  Google Scholar 

  40. Hairer, M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014)

    ADS  MathSciNet  Google Scholar 

  41. Hairer, M., Matetski, K.: Discretisations of rough stochastic PDEs. Ann. Probab. 46(3), 1651–1709 (2018)

    MathSciNet  Google Scholar 

  42. Hairer, M.: The motion of a random string. arXiv:1605.02192 (2016)

  43. Hairer, M., Maas, J.: A spatial version of the Itô-Stratonovich correction. Ann. Probab. 40(4), 1675–1714 (2012)

    MathSciNet  Google Scholar 

  44. Hsu, E.P.: Stochastic Analysis on Manifolds. Graduate Studies in Mathematics, vol. 38. American Mathematical Society, Providence, RI (2002)

    Google Scholar 

  45. Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes, volume 24 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, second edition (1989)

  46. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, vol. 113, 2nd edn. Springer-Verlag, New York (1991)

    Google Scholar 

  47. Keel, M., Tao, T.: Local and global well-posedness of wave maps on \({\mathbb{R} }^{1+1}\) for rough data. Int. Math. Res. Not. 1998(21), 1117–1156 (1998)

    Google Scholar 

  48. Kenig, C., Mendelson, D.: The focusing energy-critical nonlinear wave equation with random initial data. arXiv:1903.07246. To appear Int. Math. Res. Not. (2019)

  49. Killip, R., Murphy, J., Visan, M.: Invariance of white noise for KdV on the line. Invent. Math. 222(1), 203–282 (2020)

    ADS  MathSciNet  Google Scholar 

  50. Kishimoto, N.: A remark on norm inflation for nonlinear Schrödinger equations. Commun. Pure Appl. Anal. 18(3), 1375–1402 (2019)

    MathSciNet  Google Scholar 

  51. Klainerman, S., Machedon, M.: Space-time estimates for null forms and the local existence theorem. Commun. Pure Appl. Math. 46(9), 1221–1268 (1993)

    MathSciNet  Google Scholar 

  52. Klainerman, S., Machedon, M.: Smoothing estimates for null forms and applications. Duke Math. J. 81(1), 99–133 (1996), 1995

  53. Klainerman, S., Machedon, M.: On the regularity properties of a model problem related to wave maps. Duke Math. J. 87(3), 553–589 (1997)

    MathSciNet  Google Scholar 

  54. Klainerman, S., Rodnianski, I.: On the global regularity of wave maps in the critical Sobolev norm. Int. Math. Res. Not. 2001(13), 655–677 (2001)

    MathSciNet  Google Scholar 

  55. Klainerman, S., Selberg, S.: Remark on the optimal regularity for equations of wave maps type. Commun. Partial Differ. Equ. 22(5–6), 901–918 (1997)

    MathSciNet  Google Scholar 

  56. Klainerman, S., Selberg, S.: Bilinear estimates and applications to nonlinear wave equations. Commun. Contemp. Math. 4(2), 223–295 (2002)

    MathSciNet  Google Scholar 

  57. Krieger, J.: Global regularity of wave maps from \({{\mathbb{R} }}^{3+1}\) to surfaces. Commun. Math. Phys. 238(1–2), 333–366 (2003)

    ADS  Google Scholar 

  58. Krieger, J.: Global regularity of wave maps from \({\mathbb{R} }^{2+1}\) to \({\mathbb{H} }^2\). Small energy. Commun. Math. Phys. 250(3), 507–580 (2004)

    ADS  Google Scholar 

  59. Krieger, J., Schlag, W.: Concentration Compactness for Critical Wave Maps. EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich (2012)

    Google Scholar 

  60. Krieger, J., Schlag, W., Tataru, D.: Renormalization and blow up for charge one equivariant critical wave maps. Invent. Math. 171(3), 543–615 (2008)

    ADS  MathSciNet  Google Scholar 

  61. Krieger, J., Lührmann, J., Staffilani, G.: Probabilistic small data global well-posedness of the energy-critical Maxwell-Klein-Gordon equation. arXiv:2010.09528 (2020)

  62. Kupiainen, A.: Renormalization group and stochastic PDEs. Ann. Henri Poincaré 17(3), 497–535 (2016)

    ADS  MathSciNet  Google Scholar 

  63. Lebowitz, J., Rose, H., Speer, E.: Statistical mechanics of the nonlinear Schrödinger equation. J. Stat. Phys. 50(3–4), 657–687 (1988)

    ADS  Google Scholar 

  64. Lührmann, J., Mendelson, D.: Random data Cauchy theory for nonlinear wave equations of power-type on \({\mathbb{R} }^3\). Commun. Partial Differ. Equ. 39(12), 2262–2283 (2014)

    Google Scholar 

  65. Machihara, S., Nakanishi, K., Tsugawa, K.: Well-posedness for nonlinear Dirac equations in one dimension. Kyoto J. Math. 50(2), 403–451 (2010)

    MathSciNet  Google Scholar 

  66. Nahmod, A., Stefanov, A., Uhlenbeck, K.: On the well-posedness of the wave map problem in high dimensions. Commun. Anal. Geom. 11(1), 49–83 (2003)

    MathSciNet  Google Scholar 

  67. Nahmod, A.R., Oh, T., Rey-Bellet, L., Staffilani, G.: Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS. J. Eur. Math. Soc. (JEMS) 14(4), 1275–1330 (2012)

    MathSciNet  Google Scholar 

  68. Nahmod, A.R., Staffilani, G.: Randomness and nonlinear evolution equations. Acta Math. Sin. (Engl. Ser.) 35(6), 903–932 (2019)

    MathSciNet  Google Scholar 

  69. Nualart, D.: The Malliavin calculus and related topics. Probability and its Applications (New York), 2nd edn. Springer-Verlag, Berlin (2006)

    Google Scholar 

  70. Oh, T.: A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces. Funkcial. Ekvac. 60(2), 259–277 (2017)

    MathSciNet  Google Scholar 

  71. Oh, T., Okamoto, M., Tolomeo, L.: Focusing \(\Phi ^4_3\)-model with a Hartree-type nonlinearity. arXiv:2009.03251 (2020)

  72. Oh, T., Okamoto, M., Tolomeo, L.: Stochastic quantization of the \(\Phi ^3_3\)-model. arXiv:2108.06777 (2021)

  73. Oh, T., Sosoe, P., Tolomeo, L.: Optimal integrability threshold for Gibbs measures associated with focusing NLS on the torus. arXiv:1709.02045 (2021)

  74. Otto, F., Weber, H.: Quasilinear SPDEs via rough paths. Arch. Ration. Mech. Anal. 232(2), 873–950 (2019)

    MathSciNet  Google Scholar 

  75. Pohlmeyer, K.: Integrable Hamiltonian systems and interactions through quadratic constraints. Commun. Math. Phys. 46(3), 207–221 (1976)

    ADS  MathSciNet  Google Scholar 

  76. Raphaël, P., Rodnianski, I.: Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems. Publ. Math. Inst. Hautes Études Sci. 115, 1–122 (2012)

    MathSciNet  Google Scholar 

  77. Rodnianski, I., Sterbenz, J.: On the formation of singularities in the critical \({\rm O}(3)\)\(\sigma \)-model. Ann. Math. (2) 172(1), 187–242 (2010)

    MathSciNet  Google Scholar 

  78. Shatah, J., Struwe, M.: The Cauchy problem for wave maps. Int. Math. Res. Not. 2002(11), 555–571 (2002)

    MathSciNet  Google Scholar 

  79. Shen, H.: Stochastic quantization of an Abelian Gauge theory. Commun. Math. Phys. 384(3), 1445–1512 (2021)

    ADS  MathSciNet  Google Scholar 

  80. Simon, L.: Theorems on Regularity and Singularity of Energy Minimizing Maps. Lectures in Mathematics, ETH Zürich. Birkhäuser Verlag, Basel (1996)

    Google Scholar 

  81. Sterbenz, J., Tataru, D.: Energy dispersed large data wave maps in \(2+1\) dimensions. Commun. Math. Phys. 298(1), 139–230 (2010)

    ADS  MathSciNet  Google Scholar 

  82. Sterbenz, J., Tataru, D.: Regularity of wave-maps in dimension \(2+1\). Commun. Math. Phys. 298(1), 231–264 (2010)

    ADS  MathSciNet  Google Scholar 

  83. Struwe, M.: Equivariant wave maps in two space dimensions. Commun. Pure Appl. Math. 56(7), 815–823 (2003)

    MathSciNet  Google Scholar 

  84. Sun, C., Tzvetkov, N.: Concerning the pathological set in the context of probabilistic well-posedness. C. R. Math. Acad. Sci. Paris 358(9–10), 989–999 (2020)

    MathSciNet  Google Scholar 

  85. Sun, C., Tzvetkov, N.: Refined probabilistic global well-posedness for the weakly dispersive NLS. Nonlinear Anal. 213, 112530 (2021)

    MathSciNet  Google Scholar 

  86. Tao, T.: Global regularity of wave maps. I. Small critical Sobolev norm in high dimension. Int. Math. Res. Not. 2001(6), 299–328 (2001)

    MathSciNet  Google Scholar 

  87. Tao, T.: Global regularity of wave maps. II. Small energy in two dimensions. Commun. Math. Phys. 224(2), 443–544 (2001)

    ADS  MathSciNet  Google Scholar 

  88. Tao, T.: Global regularity of wave maps. III–VII. arXiv preprints, (2008+)

  89. Tao, T.: Ill-posedness for one-dimensional wave maps at the critical regularity. Am. J. Math. 122(3), 451–463 (2000)

    MathSciNet  Google Scholar 

  90. Tao, T.: Nonlinear dispersive equations, volume 106 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI. Local and global analysis (2006)

  91. Tataru, D.: On global existence and scattering for the wave maps equation. Am. J. Math. 123(1), 37–77 (2001)

    MathSciNet  Google Scholar 

  92. Tataru, D.: Rough solutions for the wave maps equation. Am. J. Math. 127(2), 293–377 (2005)

    MathSciNet  Google Scholar 

  93. Tataru, D.: Local and global results for wave maps. I. Commun. Partial Differ. Equ. 23(9–10), 1781–1793 (1998)

    MathSciNet  Google Scholar 

  94. Terng, C.-L., Uhlenbeck, K.: \(1+1\) Wave maps into symmetric spaces. Commun. Anal. Geom. 12(1–2), 345–388 (2004)

    MathSciNet  Google Scholar 

  95. Tzvetkov, N.: Quasiinvariant Gaussian measures for one-dimensional Hamiltonian partial differential equations (2015)

Download references

Acknowledgements

The authors thank Rishabh Gvalani, Florian Kunich, Stephan Luckhaus, Felix Otto, Igor Rodnianski, Angela Stevens, Terence Tao, and Markus Tempelmayr for helpful and interesting discussions. The authors also thank the anonymous referees for valuable comments and suggestions. B.B. thanks the MPI for Mathematics in the Sciences for support during a visit in the summer of 2021. The three authors thank ICERM, which is supported by NSF grant DMS-1929284, for support during the semester program on Hamiltonian Methods in Dispersive and Wave Evolution Equations. B.B. was partially supported by the NSF under Grant No. DMS-1926686. J.L. was partially supported by NSF grant DMS-1954707. G.S. was partially supported by DMS-1764403, DMS-2052651 and the Simons Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjoern Bringmann.

Ethics declarations

Conflict of interest

The authors do not have any competing interests to declare.

Additional information

Communicated by M. Hairer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Deterministic Ill-Posedness

Appendix A. Deterministic Ill-Posedness

We now prove the mild ill-posedness statement in Theorem 1.2, which concerns the unboundedness of the first Picard iterate.

Proof of Theorem 1.2.(ii)

We only treat the case \({\mathbb {S}}^2\), since the argument easily generalizes to \({\mathbb {S}}^{D-1}\) with \(D\geqslant 3\). We split the argument into two steps. In the first step, we present several reductions which simplify the first Picard iterate. In the second step, we construct an explicit sequence of functions for which the first Picard iterate diverges.

Step 1: Reductions. We let \(\phi _0,\phi _1\in C^\infty _b({\mathbb {R}}\rightarrow {\mathbb {R}}^3)\) satisfy

$$\begin{aligned} \Vert \phi _0(x) \Vert _2^2=1 \quad \text {and}\quad \langle \phi _0(x), \phi _1(x) \rangle =0 \qquad \forall x \in {\mathbb {R}}. \end{aligned}$$
(A.1)

Here, \(\Vert \cdot \Vert _2\) refers to the Euclidean norm on \({\mathbb {R}}^3\). Then, the right and left-moving linear waves are given by

$$\begin{aligned} \phi ^\pm (x) = \frac{1}{2} \Big ( \phi _0(x) {\mp } \int _0^x \textrm{d}y\, \phi _1(y) \Big ). \end{aligned}$$

We recall that the second fundamental form of the sphere \({\mathbb {S}}^2\) is given by

$$\begin{aligned} \mathrm {I\!I}^k_{ij}(\phi )= \delta _{ij} \phi ^k. \end{aligned}$$

As a result, the first Picard iterate of the wave maps equation (WM) is given by

We now fix any time \(t>0\). Furthermore, we let \(\chi \) be our previous nonnegative, smooth cut-off function, which satisfies \({\text {supp}}(\chi ) \subseteq (-3,3)\), and let \(0<\epsilon \leqslant t/100\). For any \(r\in {\mathbb {R}}\), it then holds that

In order to prove the unboundedness of the first Picard iterate on \(C^r\times C^{r-1}\) for any \(r\leqslant 1/2\), it therefore suffices to prove that

(A.2)

We now choose \(\phi _0(x)=e_3 \in {\mathbb {R}}^3\) and choose \(\phi _1(x)=\psi ^\prime (x)\) for \(\psi (x) \in C^\infty _c((-1,1)\rightarrow {\mathbb {R}}^3)\). In particular, it holds that \(\Vert \psi \Vert _{C^{1/2}} \lesssim \Vert \phi _1 \Vert _{C^{-1/2}}\). Due to the geometric constraint in (A.1), \(\psi \) has to satisfy \(\langle e_3, \psi \rangle =0\). Using our assumptions, the first Picard iterate takes the form

In order to further simplify , we assume that \({\text {supp}}(\psi ) \subseteq (-2\epsilon ,2\epsilon )\). In particular, it holds that \(\psi (x+t)=\psi (x-t)=0\) for all \(x\in (-2\epsilon ,2\epsilon )\). Then, a direct computation yields that

$$\begin{aligned} \int _{x-t}^{x+t} \textrm{d}v^\prime \int _{x-t}^{v^\prime } \textrm{d}u^\prime \, 2e_3 \, \langle \psi ^\prime (u^\prime ), \psi ^\prime (v^\prime ) \rangle&= 0, \\ -\int _{x-t}^{x+t} \textrm{d}v^\prime \int _{x-t}^{v^\prime } \textrm{d}u^\prime \, \psi (u^\prime ) \langle \psi ^\prime (u^\prime ), \psi ^\prime (v^\prime ) \rangle&= -\frac{1}{2} \int _{x-t}^{x+t} \textrm{d}y\, \psi ^\prime (y) \Vert \psi (y) \Vert _2^2, \\ \int _{x-t}^{x+t} \textrm{d}v^\prime \int _{x-t}^{v^\prime } \textrm{d}u^\prime \, \psi (v^\prime ) \langle \psi ^\prime (u^\prime ), \psi ^\prime (v^\prime ) \rangle&= -\frac{1}{2} \int _{x-t}^{x+t} \textrm{d}y\, \psi ^\prime (y) \Vert \psi (y) \Vert _2^2. \end{aligned}$$

As a result, we obtain that

We now write \(\psi (y)=\psi ^1(y) e_1 +\psi ^2(y) e_2\), which satisfies the constraint \(\langle \psi ,e_3 \rangle =0\). Then, the first coordinate of is given by

Thus, it suffices to prove that

$$\begin{aligned} \sup _{\begin{array}{c} \psi ^1,\psi ^2 :\\ {\text {supp}}(\psi ^j)\subseteq (-2\epsilon ,2\epsilon ) \\ \Vert \psi ^j \Vert _{C^{1/2}}\leqslant 1 \end{array}} \Big | \int _{-\infty }^\infty \textrm{d}x \chi (x/\epsilon ) \int _{x-t}^{x+t} \textrm{d}y\, (\psi ^1)^\prime (y) (\psi ^2)^2(y) \Big |=\infty . \end{aligned}$$
(A.3)

Step 2: Proof of (A.3). The main idea in the proof of (A.3) is to create a severe high\(\times \)high\(\times \)low-interaction in the integrand. In order to cover the endpoint \(C^{1/2}\), however, we need to be careful and work at multiple scales.

We let \(\kappa ,\kappa _0 \in {\mathbb {N}}\) be arbitrary and define the set of frequencies

$$\begin{aligned} F_{\kappa ,\kappa _0} = \{ 2^{10k} :\kappa _0 \leqslant k \leqslant \kappa \}. \end{aligned}$$

Then, we define

$$\begin{aligned} \psi ^1(y)&= \chi (y/\epsilon ) \sum _{n\in F_{\kappa ,\kappa _0}} n^{-1/2} \sin (ny), \end{aligned}$$
(A.4)
$$\begin{aligned} \psi ^2(y)&= \chi (y/\epsilon ) \Big ( \sin (y) + \sum _{n\in F_{\kappa ,\kappa _0}} n^{-1/2} \sin ((n-1)y) \Big ). \end{aligned}$$
(A.5)

Since the frequencies in \(F_{\kappa ,\kappa _0}\) are well-separated, it holds that

$$\begin{aligned} \Vert \psi ^1 \Vert _{C^{1/2}}, \Vert \psi ^2 \Vert _{C^{1/2}} \lesssim _\epsilon 1, \end{aligned}$$

where the implicit constant is uniform in \(\kappa \) and \(\kappa _0\). We now claim that

$$\begin{aligned}{} & {} \Big | \int _{x-t}^{x+t} \textrm{d}y\, (\psi ^1)^\prime (y) (\psi ^2)^2(y) + \, \frac{1}{2} (\kappa -\kappa _0) \int _{x-t}^{x+t} \textrm{d}y\, \chi (y/\epsilon )^3 (1-\cos (2y)) \Big |\nonumber \\{} & {} \quad \lesssim _\epsilon 2^{-5\kappa _0} (\kappa -\kappa _0) + 1. \end{aligned}$$
(A.6)

Before proving (A.6), we first show that (A.6) implies (A.3). By integrating (A.6) against \(\chi (x/\epsilon )\), using that \(1-\cos (2y)\geqslant 0\), and using that \(0<\epsilon \leqslant t/10\), we obtain

$$\begin{aligned}&\, \bigg | \int _{-\infty }^\infty \textrm{d}x\, \chi (x/\epsilon ) \int _{x-t}^{x+t} \textrm{d}y\, (\psi ^1)^\prime (y) (\psi ^2)^2(y) \bigg | \\&\geqslant \, \frac{1}{2} (\kappa -\kappa _0) \bigg | \int _{-\infty }^\infty \textrm{d}x\, \chi (x/\epsilon ) \int _{x-t}^{x+t} \textrm{d}y\, \chi (y/\epsilon )^3 (1-\cos (2y)) \bigg | - C_\epsilon \big ( 2^{-5\kappa _0} (\kappa -\kappa _0) + 1 \big ) \\&\geqslant \, c_\epsilon (\kappa -\kappa _0) - C_\epsilon \big ( 2^{-5\kappa _0} (\kappa -\kappa _0) + 1 \big ), \end{aligned}$$

where \(C_\epsilon >0\) and \(c_\epsilon >0\) are sufficiently large and small constants, respectively. We now obtain the desired conclusion (A.3) by first choosing a parameter \(\kappa _0=\kappa _0(\epsilon )\) such that \(C_\epsilon 2^{-5\kappa _0}\) is smaller than \( c_\epsilon \) and then letting \(\kappa \rightarrow \infty \). Thus, it now only remains to prove the claim (A.6). By inserting (A.4) and (A.5) into the integrand, we obtain that

(A.7)
(A.8)
(A.9)

where we have already estimated terms in which the derivative hits the cut-off \(\chi (y/\epsilon )\). We start by analyzing the main term (A.7). First, we treat the contribution of the diagonal case \(m=n\). Using trigonometric identities, we have that

$$\begin{aligned} \sin (y) \sin ((n-1) y) \cos (ny) = \frac{1}{4} \Big ( -1 + \cos (2y) + \cos ((2n-2) y) - \cos (2ny) \Big ). \end{aligned}$$

Using integration by parts, this yields

which is the main term in (A.6). In the non-diagonal case \(m\ne n\), we use that the frequencies in \(F_{\kappa ,\kappa _0}\) are well-separated. Together with integration by parts, this yields

$$\begin{aligned}&\Big | \sum _{\begin{array}{c} m,n\in F_{\kappa ,\kappa _0}\\ :m \ne n \end{array}} m^{-1/2} n^{1/2} \int _{x-t}^{x+t} \textrm{d}y\, \chi (y/\epsilon )^3 \sin (y) \sin ((m-1)y) \cos (ny) \Big | \\&\lesssim _\epsilon \sum _{m,n\in F_{\kappa ,\kappa _0}} m^{-1/2} n^{1/2} \max (m,n)^{-1} \lesssim 1. \end{aligned}$$

We now estimate the first error term (A.8). Using integration by parts, it follows that

$$\begin{aligned} \Big | \sum _{n \in F_{\kappa ,\kappa _0}} n^{1/2} \int _{x-t}^{x+t} \textrm{d}y\, \chi (y/\epsilon )^3 \sin ^2(y) \cos (ny) \Big |\lesssim _\epsilon \sum _{n \in F_{\kappa ,\kappa _0}} n^{-\frac{1}{2}} \lesssim 1. \end{aligned}$$

It remains to estimate the third error term (A.9). To this end, we distinguish two cases. In the case \(\max (\ell ,m,n)>{{\,\textrm{med}\,}}(\ell ,m,n)\), we use that the frequencies in \(F_{\kappa ,\kappa _0}\) are well-separated, which implies that

$$\begin{aligned}&\Big | \sum _{\begin{array}{c} \ell ,m,n\in F_{\kappa ,\kappa _0}:\\ \max (\ell ,m,n)>{{\,\textrm{med}\,}}(\ell ,m,n) \end{array}} \ell ^{-1/2}m^{-1/2} n^{1/2} \\&\int _{x-t}^{x+t} \textrm{d}y\, \chi (y/\epsilon )^3 \sin ((\ell -1)y) \sin ((m-1)y) \cos (ny)\Big | \\ \lesssim _\epsilon&\sum _{\ell ,m,n\in F_{\kappa ,\kappa _0}} \ell ^{-1/2}m^{-1/2} n^{1/2} \max (\ell ,m,n)^{-1} \lesssim 1. \end{aligned}$$

In the case \(\max (\ell ,m,n)={{\,\textrm{med}\,}}(\ell ,m,n)\), we only use that \(\sin (\cdot )\) and \(\cos (\cdot )\) are bounded, which implies that

$$\begin{aligned}&\Big | \sum _{\begin{array}{c} \ell ,m,n\in F_{\kappa ,\kappa _0}:\\ \max (\ell ,m,n)={{\,\textrm{med}\,}}(\ell ,m,n) \end{array}} \ell ^{-1/2}m^{-1/2} n^{1/2} \\&\int _{x-t}^{x+t} \textrm{d}y\, \chi (y/\epsilon )^3 \sin ((\ell -1)y) \sin ((m-1)y) \cos (ny)\Big | \\ \lesssim _\epsilon&\sum _{\begin{array}{c} \ell ,m,n\in F_{\kappa ,\kappa _0}:\\ \max (\ell ,m,n)={{\,\textrm{med}\,}}(\ell ,m,n) \end{array}}\ell ^{-1/2}m^{-1/2} n^{1/2} \lesssim \sum _{\ell ,m\in F_{\kappa ,\kappa _0}} \ell ^{-1/2} \lesssim 2^{-5\kappa _0} (\kappa -\kappa _0). \end{aligned}$$

This completes the proof of (A.6). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bringmann, B., Lührmann, J. & Staffilani, G. The Wave Maps Equation and Brownian Paths. Commun. Math. Phys. 405, 60 (2024). https://doi.org/10.1007/s00220-023-04885-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00220-023-04885-5

Navigation