Skip to main content
Log in

Existence and stability of localized breather modes in a Heisenberg helimagnet under biquadratic exchange interactions

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Discrete bright and dark type breather modes in a one dimensional Heisenberg helimagnet with biquadratic exchange interactions is studied under semiclassical treatment. The dynamics governed by a nonlinear partial differential equation is solved by applying multiple scales combined with quasi-discreteness approximation and reduced to a Nonlinear Schr\(\ddot{o}\)dinger Equation (NLSE). Based on the solution of NLSE derived by Inverse Scattering Technique (IST), the impact of exchange interaction on the breather modes are analysed. The Modulational Instability (MI) features of the present system is also investigated via linear stability analysis.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: The paper contents are purely theoretical and did not need any data].

References

  1. I. Žutić, J. Fabian, S.D. Sarma, Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  2. H.J. Mikeska, M. Steiner, Solitary excitations in one-dimensional magnets. Adv. Phys. 40, 191 (1991)

    Article  ADS  CAS  Google Scholar 

  3. R.M. White, Quantum theory of magnetism (Springer, New York, 1982)

    Google Scholar 

  4. R. Quartu, H.T. Diep, Phase diagram of body-centered tetragonal helimagnets. J. Magn. Magn. Mater. 182, 38 (1998)

    Article  ADS  CAS  Google Scholar 

  5. J. Kishine, I.G. Bostrem, A.S. Ovchinnikov, V.I.E. Sinitsyn, Coherent sliding dynamics and spin motive force driven by crossed magnetic fields in a chiral helimagnet. Phys. Rev. B 86, 214426 (2012)

    Article  ADS  Google Scholar 

  6. S.K. Kudtarkar, Dynamics of helimagnets with spin polarised currents. Phys. Lett. A 374, 366 (2009)

    Article  ADS  CAS  Google Scholar 

  7. V. Laliena, J. Campo, Y. Kousaka, Understanding the H-T phase diagram of the monoaxial helimagnet. Phys. Rev. B 94, 094439 (2016)

    Article  ADS  Google Scholar 

  8. M. Daniel, J. Beaula, Nonlinear spin excitations in a classical Heisenberg anisotropic helimagnet. Phys. D 239, 397 (2010)

    Article  MathSciNet  Google Scholar 

  9. I.G. Bostrem, J.-I. Kishine, A.S. Ovchinnikov, Transport spin current driven by the moving kink crystal in a chiral helimagent. Phys. Rev. B 77, 132405 (2008)

    Article  ADS  Google Scholar 

  10. J.W. Qi, Z.D. Li, Z.Y. Yang, W.L. Yang, Three types magnetic moment distribution of nonlinear excitations in a Heisenberg helimagnet. Phys. Lett. A 381, 1874 (2017)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  11. M.K. Zalautdinov, J.W. Baldwin, M.H. Marcus, R.B. Reichenbach, J.M. Parpia, B.H. Houston, Two-dimensional array of coupled nanomechanical resonators. Appl. Phys. Lett. 88, 143504 (2006)

    Article  ADS  Google Scholar 

  12. D. Xiong, D. Saadatmand, S.V. Dmitriev, Crossover from ballistic to normal heat transport in the \(\phi ^{4}\) lattice: if nonconservation of momentum is the reason, what is the mechanism? Phys. Rev. E 96, 042109 (2017)

    Article  ADS  PubMed  Google Scholar 

  13. H.N. Chan, K.W. Chow, Periodic and localized wave patterns for coupled Ablowitz–Ladik systems with negative cross phase modulation. Commun. Nonlinear Sci. Numeri. Simul. 65, 185 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  14. M.A. Porter, P.G. Kevrekidis, C. Daraio, Granular crystals: nonlinear dynamics meets materials engineering. Phys. Today 68, 44 (2015)

    Article  CAS  Google Scholar 

  15. M. Sato, B.E. Hubbard, L.Q. English, A.J. Sievers, B. Ilic, D.A. Czaplewski, H.G. Craighead, Study of intrinsic Localized vibrational modes in micromechanical oscillator arrays. Chaos 13, 702 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. R. Franzosi, R. Livi, G. Oppo, A. Politi, Discrete breathers in Bose–Einstein condensates. Nonlinearity 24, R89 (2011)

    Article  MathSciNet  Google Scholar 

  17. E. Trias, J.J. Mazo, T.P. Orlando, Discrete breathers in nonlinear lattices: experimental detection in a Josephson Array. Phys. Revi. Lett. 84, 741 (2000)

    Article  ADS  CAS  Google Scholar 

  18. D.-J. Li, Intrinsic localized modes in quantum ferromagnetic XXZ chains in an oblique magnetic field. Int. J. Theor. Phys. 55, 1201 (2016)

    Article  MathSciNet  CAS  Google Scholar 

  19. I.G. Bostrem, E.G. Ekomasov, J.-I. Kishine, A.S. Ovchinnikov, V.I. E. Sinitsyn, Dark discrete breather modes in a monoaxial chiral helimagnet with easy-plane anisotropy. Phys. Rev. B 104, 214420 (2021)

    Article  ADS  CAS  Google Scholar 

  20. J. Akhalya, M.M. Latha, Influence of NNN interaction and existence of breathers in a quasi-discrete Heisenberg helimagnetic spin system. Phys. B: Conden. Matter 668, 415218 (2023)

    Article  CAS  Google Scholar 

  21. B.S. GnanaBlessy, M.M. Latha, Chaotic dynamics of Heisenberg ferromagnetic spin chain with bilinear and biquadratic interactions. Phys. B: Conden. Matter 523, 114 (2017)

    Article  ADS  Google Scholar 

  22. C. Christal Vasanthi, M.M. Latha, Localized spin excitations in a disordered antiferromagnetic chain with biquadratic interactions. Eur. Phys. J. D 69, 268 (2015)

    Article  ADS  Google Scholar 

  23. A.R. Moura, A.R. Pereira, Study of the bilinear biquadratic Heisenberg model on a honeycomb lattice via Schwinger bosons. J. Magn. Magn. Mater. 342, 11 (2013)

    Article  ADS  CAS  Google Scholar 

  24. M. Daniel, L. Kavitha, Magnetization reversal through soliton flip in a biquadratic ferromagnet with varying exchange interactions. Phys. Rev. B 66, 184433 (2002)

    Article  ADS  Google Scholar 

  25. I. Rabuffo, L. De Cesare, A. Caramico D́Auria, M.T. Mercaldo, Effect of biquadratic exchange on the phase diagram of a spin-1 transverse XY model with single-ion anisotropy. J. Magn. Magn. Mater. 472, 40 (2019)

    Article  ADS  CAS  Google Scholar 

  26. Y.S. Kivshar, Localized modes in a chain with nonlinear on-site potential. Phys. Lett. A 133, 172 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  27. L. Kavitha, E. Parasuraman, D. Gopi, A. Prabhu, R.A. Vicencio, Nonlinear nano-scale localized breather modes in a discrete weak ferromagnetic spin lattice. J. Magn. Magn. Mater. 401, 394 (2016)

    Article  ADS  CAS  Google Scholar 

  28. L.Q. English, M. Sato, A.J. Sievers, Modulational instability of nonlinear spin waves in easy-axis antiferromagnetic chains. II. Influence of sample shape on intrinsic localized modes and dynamic spin defects. Phys. Rev. B 67, 024403 (2003)

    Article  ADS  Google Scholar 

  29. P.G. Gennes, The physics of liquid crystals (Clarendon Press, Oxford, 1975)

    Google Scholar 

  30. F.J. Dyson, General theory of spin wave interactions. Phys. Rev. B 102, 1217 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  31. Maleev, “Scattering of slow neutrons in ferromagnets”, Soviet J. Exp. Theor. Phys. 6, 776 (1958)

  32. R.J. Glauber, Coherent and in-coherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

  33. I. Daumont, T. Dauxois, M. Peyard, Modulational instability: first step towards energy localization in nonlinear lattices. Nonlinearity 10, 617 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  34. K. Yoshimura, S. Watanabe, Envelope soliton as an intrinsic localized mode in a one dimension non-linear lattice. J. Phys. Soc. Jpn. 60, 82 (1991)

    Article  ADS  CAS  Google Scholar 

  35. G. Huang, S. Zhang, H. BambBambi, Non-linear exitation in ferro magnetic chains with nearest and next nearest neigbour exchange interactions. Phys. Rev. B 58, 9194 (1998)

  36. N. Vishnu Priya, M. Senthilvelan, On the characterization of breather and rogue wave solutions and modulation instability of a coupled generlised non - linear schrodinger equations. Wave Mot. 54, 125 (2015)

    Article  ADS  Google Scholar 

  37. D.J. Li, Intrinsic localized modes in quantum ferromagnetic XXZ chains in an oblique magnetic field. Int. J. Theor. Phys. 55, 1201 (2016)

    Article  MathSciNet  CAS  Google Scholar 

  38. D.J. Li, Intrinsic localized modes in antiferro magnetic chains with Dzyalosshinsky–Moriya interaction. Int. J. Theor. Phys. 46, 399 (2005)

    Google Scholar 

  39. G. Huang, Gap solitons and resonant kinks in one dimensional Heisenberg ferromagnets. Commun. Theor. Phys. 25, 415 (1996)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  40. B.Z. Essimbi, Spatially localized voltage oscillation in an electrical lattice. J. Phys. D Appl. Phys. 35, 1438 (2002)

    Article  ADS  CAS  Google Scholar 

  41. M. Remoissenet, Waves called solitons : concepts and experiments (Springer, Berlin, 1996)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to J. Akhalya.

Appendices

Appendix A

$$\begin{aligned} G_{1}= & {} 2\mu _{n-1}^{2}+4\mu _{n-1}+2\mu _{n}\mu _{n-2}^{2}+4\mu _{n}\mu _{n-1}\\{} & {} +2\mu _{n+1}^{2} 4\mu _{n+1}+2\mu _{n}\mu _{n+1}^{2}+4\mu _{n}\mu _{n+1},\\ G_{2}= & {} 6\mu _{n+1}^{2}+12\mu _{n+1}+8\mu _{n}+6\mu _{n}\mu _{n+1}+12\mu _{n}\mu _{n+1}\\{} & {} \quad +6\mu _{n-1}^{2}+12\mu _{n-1}+6\mu _{n}\mu _{n-1}^{2}\\{} & {} +12\mu _{n}\mu _{n-1}+12\mu _{n}^{2}+4\mu _{n}\mu _{n}^{2},\\ G_{3}= & {} 2\mu _{n-1}^{2}+4\mu _{n-1}+\mu _{n}\mu _{n-1}^{2}+4\mu _{n}\mu _{n-1}+2\mu _{n+1}^{2}\\{} & {} +4\mu _{n+1}+2\mu _{n}\mu _{n+1}^{2}+4\mu _{n}\mu _{n+1},\\ G_{4}= & {} 6\phi _{0}^{2}\mu _{n}^{2}+4\phi _{0}^{2}\mu _{n}+2\phi _{0}^{2}\mu _{n}^{3},\\ G_{5}= & {} 2J\phi _{0}^{2}\mu _{n}-2JS\mu _{n}-4J_{1}S^{3}\mu _{n}+20J_{1}S^{2}\phi _{0}^{2}\mu _{n}\\{} & {} +JS\mu _{n+1}-JS\mu _{n-1}-\frac{J\phi _{0}^{2}}{2}[3\mu _{n-1}^{2}\\{} & {} +4\mu _{n-1}+\mu _{n-1}^{3}+2\mu _{n}{2}+4\mu _{n}+\mu _{n+1}\mu _{n}^{2}+2\mu _{n+1}\mu _{n}\\{} & {} +4\mu _{n+1}+\mu _{n+1}^{3}+3\mu _{n+1}^{2}+\mu _{n-1}\mu _{n}^{2}\\{} & {} +2\mu _{n-1}\mu _{n}]+J_{1}S^{3}[\mu _{n+1}+\mu _{n-1}]-J_{1}S^{2}\phi _{0}^{2}[3\mu _{n-1}^{3}\\{} & {} +4\mu _{n-1}\mu _{n}^{2}+8\mu _{n}\mu _{n-1}\\{} & {} +14\mu _{n}^{2}+3\mu _{n-1}\mu _{n}^{2}+6\mu _{n-1}\mu _{n}+3\mu _{n+1}^{3}+7\mu _{n+1}\mu _{n}^{2}\\{} & {} +14\mu _{n}\mu _{n+1}+16\mu _{n-1}+28\mu _{n}\\{} & {} +9\mu _{n+1}^{2}+9\mu _{n-1}^{2}+16\mu _{n+1}-\frac{2S\Gamma q}{i}[\mu _{n+1}-\mu _{n-1}]\\{} & {} -\frac{\Gamma q}{i}\phi _{0}^{2}[\mu _{n-1}^{2}+2\mu _{n-1}+\mu _{n-1}^{3}+2\mu _{n-1}^{2}\\{} & {} +\mu _{n+1}\mu _{n}^{2}+2\mu _{n}\mu _{n+1}-\mu _{n-1}\mu _{n}^{2}-2\mu _{n-1}\mu _{n}+9\mu _{n+1}^{2}\\{} & {} +9\mu _{n-1}^{2}+16\mu _{n+1},\\ G_{6}= & {} JS[\mu _{n+1}-\mu _{n-1}]+\frac{J\phi _{0}^{2}}{2}[3\mu _{n-1}^{2}+2\mu _{n-1}\\{} & {} +\mu _{n-1}^{3}+\mu _{n+1}\mu _{n}^{2}+2\mu _{n+1}\mu _{n}\\{} & {} -3\mu _{n+1}^{2}-2\mu _{n+1}-\mu _{n+1}^{3}-\mu _{n-1}\mu _{n}^{2}-2\mu _{n-1}\mu _{n}]\\{} & {} +2J_{1}S^{3}[\mu _{n+1}-\mu _{n-1}]-J_{1}S^{2}\phi _{0}^{2}[3\mu _{n-1}^{2}+3\mu _{n-1}^{3}\\{} & {} +6\mu _{n-1}^{2}+\mu _{n-1}\mu _{n}^{2}+2\mu _{n}\mu _{n-1}-3\mu _{n+1}^{3}-\mu _{n+1}\mu _{n}^{2}\\{} & {} -2\mu _{n}\mu _{n+1}-10\mu _{n+1}\\{} & {} -9\mu _{n+1}^{2}+10\mu _{n-1}]-\frac{2S\Gamma q}{i}[\mu _{n+1}+\mu _{n-1}-2\mu _{n}]\\{} & {} +\frac{\Gamma q}{i}\phi _{0}^{2}[\mu _{n-1}^{3}+3\mu _{n-1}^{2}+2\mu _{n}^{2}+\mu _{n+1}\mu _{n}^{2}\\{} & {} +2\mu _{n}\mu _{n+1}+4\mu _{n-1}+\mu _{n-1}\mu _{n}^{2}+2\mu _{n-1}\mu _{n}]\\ {}{} & {} +4\mu _{n+1}+\mu _{n+1}^{3}+3\mu _{n+1}^{2},\\ G_{7}= & {} J_{1}S^{2}\phi _{0}^{2}[2\mu _{n-1}^{2}+4\mu _{n-1}+2\mu _{n}\mu _{n-1}^{2}\\{} & {} +4\mu _{n}\mu _{n-1}+2\mu _{n+1}^{2}+2\mu _{n+1}^{2}+4\mu _{n+1}+2\mu _{n}\mu _{n+1}^{2}\\{} & {} +4\mu _{n}\mu _{n+1}]-\Gamma S^{2}\phi _{0}^{2}[2\mu _{n-1}^{2}\\{} & {} +4\mu _{n-1}+2\mu _{n}\mu _{n-1}^{2}+4\mu _{n}\mu _{n-1}+2\mu _{n+1}^{2}+4\mu _{n+1}\\{} & {} +2\mu _{n}\mu _{n+1}^{2}-4\mu _{n}\mu _{n+1},\\ G_{8}= & {} J_{1}S^{2}\phi _{0}^{2}[2\mu _{n+1}^{2}+4\mu _{n+1}+2\mu _{n}\mu _{n+1}^{2}+4\mu _{n}\mu _{n+1}\\{} & {} -2\mu _{n-1}^{2}-4\mu _{n-1}^{2}-2\mu _{n}\mu _{n-1}^{2}-4\mu _{n}\mu _{n-1}]\\{} & {} +\Gamma S^{2}\phi _{0}^{2}[2\mu _{n-1}^{2}+4\mu _{n-1}\\{} & {} +2\mu _{n}\mu _{n-1}^{2}+4\mu _{n}\mu _{n-1}-2\mu _{n+1}^{2}-4\mu _{n+1}\\{} & {} -2\mu _{n}\mu _{n+1}^{2}-4\mu _{n}\mu _{n+1},\\ \end{aligned}$$

Appendix B

$$\begin{aligned} H_{1}= & {} -2JS-4J_{1}S^{3}+2JS \cos (Q)\\{} & {} -6J\phi _{0}^{2}\beta \beta ^{*}-4J\phi _{0}^{2} \cos (Q)\\{} & {} +4J_{1}S^{3}\phi _{0}^{2} \cos (Q)-60J_{1}S^{2}\phi _{0}^{2}\beta \beta ^{*} \cos (Q)\\{} & {} -8J_{1}S^{2}\phi _{0}^{2}-32J_{1}S^{2}\\{} & {} \phi _{0}^{2} \cos (Q)+4\Gamma Sqsin (Q)-4\Gamma q \phi _{0}^{2}\sin (Q)\\{} & {} -4\Gamma \phi _{0}^{2}\beta \beta ^{*}\sin (Q),\\ H_{2}= & {} 2JS \sin (Q)-2J\phi _{0}^{2}\sin (Q)-2J\phi _{0}^{2}\beta \beta ^{*} \sin (Q)-4J_{1}S^{3}\\{} & {} \sin (Q)-20J_{1}S^{2}\phi _{0}^{2}\beta \beta ^{*}\sin (Q)-20J_{1}S^{2}\phi _{0}^{2} \sin (Q)\\{} & {} +4\Gamma Sq-4S\Gamma q \cos (Q)+8\Gamma q\phi _{0}^{2} \cos (Q) \\{} & {} +12\Gamma q\phi _{0}^{2}\beta \beta ^{*}\cos (Q),\\ H_{3}= & {} 8J_{1}S^{2}\phi _{0}^{2} \cos (Q)+4J_{1}S^{2}\phi _{0}^{2} \beta \beta ^{*} \cos (2Q)+8J_{1}S^{2}\phi _{0}^{2}\beta \beta ^{*}\\{} & {} -8\Gamma S^{2}\phi _{0}^{2} \cos (Q)-4\Gamma S^{2} \phi _{0}^{2}\beta \beta ^{*} \cos (2Q)-8\Gamma S^{2}\phi _{0}^{2} \beta \beta ^{*},\\ H_{4}= & {} 8J_{1}S^{2} \phi _{0}^{2}\sin (Q)+4J_{1}S^{2}\phi _{0}^{2} \beta \beta ^{*}\sin (2Q)-8\Gamma S^{2}\phi _{0}^{2}\\{} & {} \sin (Qa)-4\Gamma S^{2} \phi _{0}^{2}\beta \beta ^{*} \sin (2Q),\\ H_{5}= & {} -2JS-4J_{1}S^{3}+2JS \cos (Q)-6J\phi _{0}^{2}\beta \beta ^{*} \cos (Q)\\{} & {} -4J\phi _{0}^{2} \cos (Q)+4J_{1}S^{3} \cos (Q)\\{} & {} -60J_{1}S^{2}\phi _{0}^{2}\beta \beta ^{*} \cos (Q)-8J_{1}S^{2}\\{} & {} \phi _{0}^{2}-32J_{1}S^{2}\phi _{0}^{2} \cos (Q)-4\Gamma Sqsin (Q)\\{} & {} +4\Gamma q \phi _{0}^{2}\sin (Q)+4\Gamma q\phi _{0}^{2} \beta \beta ^{*}\sin (Q), \\ H_{6}= & {} -2JS \sin (Q)+2J\phi _{0}^{2}\sin (Q)+2J\phi _{0}^{2}\beta \beta ^{*} \sin (Q)\\{} & {} -4J_{1}S^{3} \sin (Q)+20J_{1}S^{2}\phi _{0}^{2}\beta \beta ^{*}\sin (Q)\\{} & {} +20J_{1}S^{2}\phi _{0}^{2} \sin (Q)+4\Gamma Sq-4S\Gamma q \cos (Q)\\{} & {} +8\Gamma q\phi _{0}^{2} \cos (Q) +12\Gamma q\phi _{0}^{2}\beta \beta ^{*}\cos (Q),\\ H_{7}= & {} 8J_{1}S^{2}\phi _{0}^{2} \cos (Q)+4J_{1}S^{2}\phi _{0}^{2} \beta \beta ^{*} \cos (2Q)\\{} & {} +8J_{1}S^{2}\phi _{0}^{2}\beta \beta ^{*}\\{} & {} -8\Gamma S^{2}\phi _{0}^{2} \cos (Q)-4\Gamma S^{2} \phi _{0}^{2}\beta \beta ^{*} \cos (2Q)-8\Gamma S^{2}\phi _{0}^{2} \beta \beta ^{*},\\ H_{8}= & {} -8J_{1}S^{2} \phi _{0}^{2}\sin (Q)-4J_{1}S^{2}\phi _{0}^{2} \beta \beta ^{*}\sin (2Q)+8\Gamma S^{2}\phi _{0}^{2} \\{} & {} \sin (Q)+4\Gamma S^{2} \phi _{0}^{2}\beta \beta ^{*} \sin (2Q)], \end{aligned}$$

Appendix C

$$\begin{aligned} F_{1}= & {} 2\mid \phi _{n,n-1}^{(1)}\mid ^{2}\phi _{n,n}^{(1)}\\{} & {} +2\mid \phi _{n,n+1}^{(1)}\mid ^{2}\phi _{n,n}^{(1)}-\mid \phi _{n,n-1}^{(1)}\mid ^{2}\phi _{n,n-1}^{(1)}\\{} & {} - \phi _{n,n+1}^{(1)*}{\phi _{n,n}^{(1)}}^{2}-\mid \phi _{n,n+1}^{(1)}\mid ^{2}\phi _{n,n+1}^{(1)}- \phi _{n,n-1}^{(1)*}{\phi _{n,n}^{(1)}}^{2},\\ F_{2}= & {} 2\mid \phi _{n,n-1}^{(1)}\mid ^{2}\phi _{n,n}^{(1)*}+6\mid \phi _{n,n+1}^{(1)}\mid ^{2}\phi _{n,n}^{(1)} \\{} & {} +6\mid \phi _{n,n-1}^{(1)}\mid ^{2}\phi _{n,n}^{(1)}+2 {\phi _{n,n+1}^{(1)}}^{2}\phi _{n,n}^{(1)*}\\{} & {} -3\mid \phi _{n,n-1}^{(1)}\mid ^{2}\phi _{n,n-1}^{(1)}-3{\phi _{n,n}^{(1)}}^{2}\phi _{n,n+1}^{(1)*}\\{} & {} -4\mid \phi _{n,n}^{(1)}\mid ^{2}\phi _{n,n-1}^{(1)}\\{} & {} -3{\phi _{n,n}^{(1)}}^{2}\phi _{n,n-1}^{(1)*}-3\mid \phi _{n,n+1}^{(1)}\mid ^{2}\phi _{n,n+1}^{(1)}\\{} & {} -4 \mid \phi _{n,n}^{(1)}\mid ^{2}\phi _{n,n+1}^{(1)}+4\mid \phi _{n,n}^{(1)}\mid ^{2}\phi _{n,n}^{(1)},\\ F_{3}= & {} 2\mid \phi _{n,n-1}^{(1)}\mid ^{2}u_{n,n}^{(1)}+2\mid u_{n,n+1}^{(1)}\mid ^{2}u_{n,n}^{(1)}\\{} & {} - {u_{n,n-1}^{(1)}}^{2}u_{n,n}^{(1)*}+ {u_{n,n+1}^{(1)}}^{2}u_{n,n}^{(1)*},\\ F_{4}= & {} {u_{n,n}^{(1)}}^{2} u_{n,n+1}^{(1)*}+\mid u_{n,n-1}^{(1)}\mid ^{2}u_{n,n-1}^{(1)}\\{} & {} -u_{n,n-1}^{(1)*}{u_{n,n}^{(1)}}^{2}-\mid u_{n,n+1}^{(1)}\mid ^{2} u_{n,n+1}^{(1)},\\ F_{5}= & {} \mid u_{n,n}^{(1)}\mid ^{2}u_{n,n}^{(1)}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhalya, J., Latha, M.M. Existence and stability of localized breather modes in a Heisenberg helimagnet under biquadratic exchange interactions. Eur. Phys. J. B 97, 23 (2024). https://doi.org/10.1140/epjb/s10051-024-00653-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-024-00653-z

Navigation