Skip to main content
Log in

Phase transitions and critical phenomena of the Blume–Capel model in complex networks

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

This paper investigates the adsorption of gas molecules onto complex materials. We explore the mapping of the traditional soft-core lattice gas model to the Blume–Capel model, investigating the phase transition and critical phenomena of the Blume–Capel model on complex networks. Additionally, we discuss the impact of cross rewiring links on the network structure. Through Monte Carlo simulation, we obtain thermodynamic properties of different network structures and determine the critical temperatures of these quantities via finite-size analysis. The results reveal the following. As the control parameter r increases, the transition temperature increases. With an increase in the crystal field strength, the transition temperature decreases. Tri-critical phenomena are observed at various control parameters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability statement

This manuscript has no associated data, or the data will not be deposited. [Authors’ comment: This article is theoretical and has no associated experimental data, and all the numerical data are included in the figures in Sect. 3].

References

  1. D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’networks. Nature 393(6684), 440–442 (1998)

  2. A.-L. Barabási, R. Albert, Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

  3. M.E. Newman, The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  4. B. Gärtner, A.N. Zehmakan, Majority model on random regular graphs. In: LATIN 2018: Theoretical Informatics: 13th Latin American Symposium, Buenos Aires, Argentina, April 16-19, 2018, Proceedings 13, pp. 572–583 (2018). Springer

  5. N. Fountoulakis, K. Panagiotou, Rumor spreading on random regular graphs and expanders. Random Struct. Algorithms 43(2), 201–220 (2013)

    Article  MathSciNet  Google Scholar 

  6. D. Juher, I.Z. Kiss, J. Saldaña, Analysis of an epidemic model with awareness decay on regular random networks. J. Theoretical Biol. 365, 457–468 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  7. O.K. Damavandi, M.L. Manning, J. Schwarz, Effective medium theory of random regular networks. Europhys. Lett. 138(2), 27001 (2022)

    Article  CAS  ADS  Google Scholar 

  8. J. Shang, R. Wang, C. Xin, G. Dai, J. Huang, Macroscopic networks of thermal conduction: Failure tolerance and switching processes. Int. J. Heat Mass Transf. 121, 321–328 (2018)

    Article  Google Scholar 

  9. A.N. Volkov, L.V. Zhigilei, Scaling laws and mesoscopic modeling of thermal conductivity in carbon nanotube materials. Phys. Rev. Lett. 104(21), 215902 (2010)

    Article  PubMed  ADS  Google Scholar 

  10. M.E. Itkis, F. Borondics, A. Yu, R.C. Haddon, Thermal conductivity measurements of semitransparent single-walled carbon nanotube films by a bolometric technique. Nano Lett. 7(4), 900–904 (2007)

    Article  CAS  PubMed  ADS  Google Scholar 

  11. K. Xiong, Z. Liu, C. Zeng, B. Li, Thermal-siphon phenomenon and thermal/electric conduction in complex networks. Natl. Sci. Rev. 7(2), 270–277 (2020)

    Article  CAS  PubMed  Google Scholar 

  12. A. Vasilopoulos, N.G. Fytas, E. Vatansever, A. Malakis, M. Weigel, Universality in the two-dimensional dilute baxter-wu model. Phys. Rev. E 105(5), 054143 (2022)

    Article  CAS  PubMed  ADS  Google Scholar 

  13. N.G. Fytas, A. Vasilopoulos, E. Vatansever, A. Malakis, M. Weigel, Multicanonical simulations of the 2d spin-1 baxter-wu model in a crystal field. In: Journal of Physics: Conference Series, vol. 2207, p. 012008 (2022). IOP Publishing

  14. K. Binder, D. Landau, Square lattice gases with two-and three-body interactions: a model for the adsorption of hydrogen on pd (100). Surface Sci. 108(3), 503–525 (1981)

    Article  CAS  ADS  Google Scholar 

  15. K. Binder, D.P. Landau, Square lattice gases with two- and three-body interactions: a model for the adsorption of hydrogen on pd(100) - sciencedirect. Surface Sci. 108(3), 503–525 (1981)

    Article  CAS  ADS  Google Scholar 

  16. K. Binder, W. Kinzel, D.P. Landau, Theoretical aspects of order-disorder transitions in adsorbed layers. Surface Sci. 117(1–3), 232–244 (1982)

    Article  CAS  ADS  Google Scholar 

  17. R. Finken, J.P. Hansen, A.A. Louis, Phase separation of a multiple occupancy lattice gas. J. Phys. A General Phys. 37(3), 577–590 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  18. A.J. Archer, A.M. Rucklidge, E. Knobloch, Soft-core particles freezing to form a quasicrystal and a crystal-liquid phase. Phys. Rev. E 92(1), 12324–12324 (2015)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  19. W. Liu, Z. Yan, G. Zhou, Phase transitions of a double occupancy lattice gas. Euro. Phys. J. B 94(6), 133 (2021)

    Article  CAS  ADS  Google Scholar 

  20. V.B. Henriques, M.C. Barbosa, Liquid polymorphism and density anomaly in a lattice gas model. Phys. Rev. E 71(3), 031504 (2005)

    Article  ADS  Google Scholar 

  21. A. Archer, A.M. Rucklidge, E. Knobloch, Soft-core particles freezing to form a quasicrystal and a crystal-liquid phase. Phys. Rev. E 92(1), 012324 (2015)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  22. D. Frydel, Y. Levin, Thermodynamic collapse in a lattice-gas model for a two-component system of penetrable particles. Phys. Rev. E 102(3), 032101 (2020)

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  23. W.-H. Li, A. Dhar, X. Deng, L. Santos, Cluster dynamics in two-dimensional lattice gases with intersite interactions. Phys. Rev. A 103(4), 043331 (2021)

    Article  CAS  ADS  Google Scholar 

  24. S. Mukherjee et al., Emergence of a bicritical end point in the random-crystal-field blume-capel model. Phys. Rev. E 101(4), 042125 (2020)

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  25. A. Vasilopoulos, Z.D. Vatansever, E. Vatansever, N.G. Fytas, Monte carlo study of the two-dimensional kinetic blume-capel model in a quenched random crystal field. Phys. Rev. E 104(2), 024108 (2021)

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  26. M. Hasenbusch, Dynamic critical exponent z of the three-dimensional ising universality class: Monte carlo simulations of the improved blume-capel model. Phys. Rev. E 101(2), 022126 (2020)

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  27. E. Vatansever, N.G. Fytas, Dynamic phase transition of the blume-capel model in an oscillating magnetic field. Phys. Rev. E 97(1), 012122 (2018)

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  28. A. Malakis, A.N. Berker, N. Fytas, T. Papakonstantinou, Universality aspects of the d= 3 random-bond blume-capel model. Phys. Rev. E 85(6), 061106 (2012)

  29. M. Keskin, O. Canko, Ü. Temizer, Dynamic phase transition in the kinetic spin-1 blume-capel model under a time-dependent oscillating external field. Phys. Rev. E 72(3), 036125 (2005)

    Article  ADS  Google Scholar 

  30. N. Fytas, J. Zierenberg, P. Theodorakis, M. Weigel, W. Janke, A. Malakis, Universality from disorder in the random-bond blume-capel model. Phys. Rev. E 97(4), 040102 (2018)

    Article  CAS  PubMed  ADS  Google Scholar 

  31. D. Frydel, Y. Levin, soft-particle lattice gas in one dimension: one-and two-component cases. Phys. Rev. E 98(6), 62123–62123 (2018)

    Article  CAS  ADS  Google Scholar 

  32. H.W. Capel, On the possibility of first-order phase transitions in ising systems of triplet ions with zero-field splitting. Physica 32(5), 966–988 (1966)

    Article  ADS  Google Scholar 

  33. A.K. Jain, D.P. Landau, Monte carlo study of the fcc blume-capel model. Phys. Rev. B 22(1), 445–452 (1980)

    Article  CAS  ADS  Google Scholar 

  34. M. Azhari, U. Yu, Monte carlo studies of the blume-capel model on nonregular two- and three-dimensional lattices: phase diagrams, tricriticality, and critical exponents. J. Stat. Mech. 2022(3), 033204–17 (2022)

    Article  MathSciNet  Google Scholar 

  35. P.D. Beale, Finite-size scaling study of the two-dimensional blume-capel model. Phys. Rev. B 33(3), 1717 (1986)

    Article  CAS  ADS  Google Scholar 

  36. C.J.d. Silva, A. Caparica, J.A. Plascak, Wang-landau monte carlo simulation of the blume-capel model. Phys. Rev. E 73(3), 036702 (2006)

  37. P. Butera, M. Pernici, The blume-capel model for spins s= 1 and 3/ 2 in dimensions d= 2 and 3. Phys. A 507, 22–66 (2018)

    Article  MathSciNet  Google Scholar 

  38. S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  39. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21 (1953)

  40. F. Fernandes, D.F. Albuquerque, F. Lima, J. Plascak, Critical behavior of the spin-1 blume-capel model on two-dimensional voronoi-delaunay random lattices. Phys. Rev. E 92(2), 022144 (2015)

    Article  CAS  ADS  Google Scholar 

  41. H. Shao, W. Guo, A.W. Sandvik, Quantum criticality with two length scales. Science 352(6282), 213–216 (2016)

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  42. S.-H. Tsai, S.R. Salinas, Fourth-order cumulants to characterize the phase transitions of a spin-1 ising model. Brazilian J. Phys. 28, 58–65 (1998)

    Article  ADS  Google Scholar 

  43. W. Janke, Accurate first-order transition points from finite-size data without power-law corrections. Phys. Rev. B 47(22), 14757 (1993)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgement

This work is supported by the Natural Science Basic Research Program of Shaanxi (Program No. 2022JM-039).

Author information

Authors and Affiliations

Authors

Contributions

JW: construct the model, MC simulation and Writing. WL: supervision and modify the manuscript. FW: finite-size analyzing. ZL: bulk properties’ calculation. KX: supervision.

Corresponding author

Correspondence to Wei Liu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Liu, W., Wang, F. et al. Phase transitions and critical phenomena of the Blume–Capel model in complex networks. Eur. Phys. J. B 97, 22 (2024). https://doi.org/10.1140/epjb/s10051-024-00659-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-024-00659-7

Navigation