Skip to main content
Log in

Quantum Optical Tristate Hadamard Gate Using Phase Encoding Principle on Photonic Crystal

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Researchers have reported two-state quantum Hadamard gate using different optical techniques. In this paper, authors propose a new concept for developing the tristate form of single qubit quantum Hadamard gate using phase encoding technique of light. Phase differences are generated by using electro-optic modulators of appropriate biasing voltages. The circuits are reversible and satisfy the quantum requirements. A similar system is also designed on 2D photonic bandgap crystal-based layout with footprint area 337.5 µm2. The cylindrical rods of refractive index 3.45 are inserted on air substrate to design the layout. The operation of the system is simulated by finite difference time domain (FDTD) method. Desired phase values are obtained by varying the optical path length in the channels. The maximum response time of the system is observed to be 0.125 ps which is very useful in superfast quantum computing and data processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Marshall, C.S. Jacobsen, C. Schäfermeier, T. Gehring, C. Weedbrookand, U.L. Andersen, Continuous-variable quantum computing on encrypted data. Nature Commun. 7, 13795 (2016)

    Article  ADS  Google Scholar 

  2. M. Mandal, P. De, S. Lakshan, M.N. Sarfaraj, S. Hazra, A. Dey, S. Mukhopadhyay, A review of electro-optic, semiconductor optical amplifier and photonic crystal-based optical switches for application in quantum computing. J. Opt. (2022). https://doi.org/10.1007/s12596-022-01045-1

    Article  Google Scholar 

  3. S. Mukhopadhyay, Role of optics in super-fast information processing. Indian J. Phys. 84, 1069–1074 (2010). https://doi.org/10.1007/s12648-010-0101-4

    Article  ADS  Google Scholar 

  4. M. Fox, Quantum Optics: An Introduction (Oxford University Press, Oxford, 2006)

    Book  Google Scholar 

  5. R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein, A. Zeilinger, High-speed linear optics quantum computing using active feed-forward. Nature 445(7123), 65–69 (2007)

    Article  ADS  Google Scholar 

  6. T.C. Ralph, G.J. Pryde, Optical quantum computing. Prog. Opt. 54, 209–269 (2010)

    Article  ADS  Google Scholar 

  7. S. Mukhopadhyay, S. Dey, S. Saha, A dream of modern technology, in Photonics and Fiber Optics: Foundations and Applications. ed. by T.K. Gangopadhyay, P. Kumbhakar, M.K. Mandal (CRC Press, 2019), p.28

    Google Scholar 

  8. K.A.G. Fisher, A. Broadbent, L.K. Shalm, Z. Yan, J. Lavoie, R. Prevedel, T. Jennewein, K.J. Resch, Quantum computing on encrypted data. Nat. Commun. 5, 3074 (2014)

    Article  ADS  Google Scholar 

  9. A. Yariv, P. Yeh, Photonics – optical electronics in modern communication, 6th edn. (Oxford University Press, New York, 2007)

    Google Scholar 

  10. B. Chakraborty, S. Mukhopadhyay, Alternative approach for conducting phase modulated all optical logic gates. Opt. Eng. 48(3), 035201 (2009)

    Article  ADS  Google Scholar 

  11. D. Samanta, Implementation of Polarization-Encoded Quantum Fredkin Gate Using Kerr Effect. J. Opt. Commun. (2019). https://doi.org/10.1515/joc-2019-0077

    Article  Google Scholar 

  12. S. Dutta, S. Mukhopadhyay, Alternating approach of implementing frequency encoded all-optical logic gates and flip-flop using semiconductor optical amplifier. Optik 122(12), 1088–1094 (2011). https://doi.org/10.1016/j.ijleo.2010.06.046

    Article  ADS  Google Scholar 

  13. B. Sarkar, S. Mukhopadhyay, An All-Optical System for Implementing Integrated Hadamard-Pauli Quantum Logic. J. Opt. Commun. (2019). https://doi.org/10.1515/joc-2019-0093

    Article  Google Scholar 

  14. B. Sarkar, S. Mukhopadhyay, all optical scheme for implementing an integrated Pauli’s X, Y and Z quantum gates with optical switches. J. Opt. 46(2), 143–148 (2017)

    Article  Google Scholar 

  15. S. Salemian, S. Mohammadnejad, Quantum Hadamard gate implementation using planar lightwave circuit and photonic crystal structures. Am. J. Appl. Sci. 5(9), 1144–1148 (2008)

    Article  Google Scholar 

  16. S. Dey, P. De, S. Mukhopadhyay, An all-optical implementation of Fredkin gate using Kerr effect. Optoelectron. Lett. 15, 317–320 (2019). https://doi.org/10.1007/s11801-019-8170-x

    Article  ADS  Google Scholar 

  17. S. Dey, S. Mukhopadhyay, All-optical high frequency clock pulse generator using the feedback mechanism in Toffoli gate with Kerr material. J. Nonlinear Opt. Phys. Mater. 25(01), 1650012 (2016)

    Article  ADS  Google Scholar 

  18. S. Dey, S. Mukhopadhyay, Implementation of all-optical Pauli-Y Gate by the integrated phase and polarisation encoding. IET Optoelectron. 12(4), 176–179 (2018)

    Article  Google Scholar 

  19. S. Dey, S. Mukhopadhyay, Approach of implementing phase encoded quantum square root of NOT gate. Electron. Lett. 53, 1375–1377 (2017). https://doi.org/10.1049/el.2017.2500

    Article  ADS  Google Scholar 

  20. S. Dey, S. Mukhopadhyay, All-optical integrated square root of Pauli-Z (SRZ) gates using polarization and phase encoding. J. Opt. 48, 520–526 (2019). https://doi.org/10.1007/s12596-019-00568-4

    Article  Google Scholar 

  21. M. Mandal, I. Goswami, S. Mukhopadhyay, Study for Implementation of Square Root of Quantum Optical Phase Shift Gate Using Electro-Optic Modulator. Braz. J. Phys. 53(5), 119 (2023). https://doi.org/10.1007/s13538-023-01331-8

    Article  ADS  Google Scholar 

  22. M. Mandal, R. Maji, S. Mukhopadhyay, Increase of side band powers in parallel phase modulation by lithium niobate–based electro-optic crystal. Braz. J. Phys. 51, 738–745 (2021). https://doi.org/10.1007/s13538-021-00871-1

    Article  ADS  Google Scholar 

  23. S.K. Garai, Novel method of designing all optical frequency-encoded Fredkin and Toffoli logic gates using semiconductor optical amplifiers. IET Optoelectron. 5(6), 247–254 (2012)

    Article  Google Scholar 

  24. S. Hazra, S. Mukhopadhyay, An Alternative Scheme of Quantum Optical Superfast Tristate CNOT Gate Using Frequency Encoding Principle of Light with Semiconductor Optical Amplifier, in New Horizons in Millimeter-Wave, Infrared and Terahertz Technologies. ed. by A. Acharyya, A. Biswas, H. Inokawa (Lecture Notes in Electrical Engineering, Springer, Singapore, 2022)

    Google Scholar 

  25. D.J. Joannopoulos, G. Steven Johnson, N.J. Winn, R.D. Meade, Photonic Crystals: Modeling the Flow of Light, 2nd edn. (Princeton University Press, 2008)

    Google Scholar 

  26. A. Salmanpour, S. Mohammadnejad, A. Bahrami, Photonic crystal logic gates: an overview. Opt. Quantum Electron. 47, 2249–2275 (2015)

    Article  Google Scholar 

  27. D.G. Angelakis, M.F. Santos, V. Yannopapas, A. Ekert, A proposal for the implementation of quantum gates with photonic-crystal waveguides. Phys. Lett. A 362(5–6), 377–380 (2007). https://doi.org/10.1016/j.physleta.2006.10.046

    Article  ADS  Google Scholar 

  28. D.G.S. Rao, S. Swarnakar, S. Kumar, Design of all-optical reversible logic gates using photonic crystal waveguides for optical computing and photonic integrated circuits. Appl. Opt. 59, 11003–11012 (2020)

    Article  ADS  Google Scholar 

  29. E. Veisi, M. Seifouri, S. Olyaee, Design and numerical analysis of multifunctional photonic crystal logic gate. Opt. Laser Technol. 151, 108068 (2022). https://doi.org/10.1016/j.optlastec.2022.108068

    Article  Google Scholar 

  30. P. De, S. Ranwa, S. Mukhopadhyay, Opt. Laser Technol. 152, 108141 (2022). https://doi.org/10.1016/j.optlastec.2022.108141

    Article  Google Scholar 

  31. P. De, S. Ranwa, S. Mukhopadhyay, Implementation of all-optical Toffoli gate by 2D Si–air photonic crystal. IET Optoelectron. 15, 139–148 (2021). https://doi.org/10.1049/ote2.12029

    Article  Google Scholar 

  32. M. Hassangholizadeh-Kashtiban, H. Alipour-Banaei, M.B. Tavakoli et al., Creation of a fast optical Toffoli gate based on photonic crystal nonlinear ring resonators. J. Comput. Electron. 19, 1281–1287 (2020). https://doi.org/10.1007/s10825-020-01508-3

    Article  Google Scholar 

  33. M. Hassangholizadeh-Kashtiban, H. Alipour-Banaei, M.B. Tavakoli, R. Sabbaghi-Nadooshan, All-optical Fredkin gate using photonic-crystal-based nonlinear cavities. Appl. Opt. 59, 635–641 (2020)

    Article  ADS  Google Scholar 

  34. R. Talebzadeh, R. Beiranvand, S.H. Moayed, Design and simulation of an all-optical Fredkin gate based on silicon slab-waveguide in a 2-D photonic crystal. Opt. Quant. Electron. 55, 241 (2023). https://doi.org/10.1007/s11082-022-04489-8

    Article  Google Scholar 

  35. A. Basuray, S. Mukhopadhyay, H.K. Ghosh, A.K. Datta, A tristate optical logic system. Opt. Commun. 85(2–3), 167–170 (1991)

    Article  ADS  Google Scholar 

  36. S.K. Gorai, A. Pal, S. Mukhopadhyay, All-optical frequency encoded inversion operation with tristate logic using reflecting semiconductor optical amplifiers. Optik 121(16), 1462–1465 (2010)

    Article  ADS  Google Scholar 

  37. M.N. Sarfaraj, S. Mukhopadhyay, All-optical scheme for implementation of tri-state Pauli-X, Y and Z quantum gates using phase encoding. Optoelectron. Lett. 17, 746–750 (2021). https://doi.org/10.1007/s11801-021-1037-y

    Article  ADS  Google Scholar 

  38. M.N. Sarfaraj, M. Sebait, S. Mukhopadhyay, Implementation of quantum optical tristate oscillators based on tristate Pauli-X, Y and Z gates by using joint encoding of phase and intensity. Optoelectron. Lett. 18(11), 673–677 (2022). https://doi.org/10.1007/s11801-022-1191-x

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Snigdha Hazra acknowledges the financial support in the form of Inspire fellowship by DST, Govt. of India. Mir Nadim Sarfaraj thanks the financial support from JRF fellowship scheme of UGC, Govt. of India. Authors also thank UGC, govt. of India for CAS program for the department of Physics.

Funding

All funding sources are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Nadim Sarfaraj.

Ethics declarations

Ethical Approval

Ethical approval is not applicable.

Conflicts of Interest

Authors declare that there are no potential conflicts of interest regarding this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazra, S., Sarfaraj, M.N. & Mukhopadhyay, S. Quantum Optical Tristate Hadamard Gate Using Phase Encoding Principle on Photonic Crystal. Braz J Phys 54, 64 (2024). https://doi.org/10.1007/s13538-024-01445-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01445-7

Keywords

Navigation