Skip to main content
Log in

Blow-up Analysis for the \({\varvec{ab}}\)-Family of Equations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

This paper investigates the Cauchy problem for the ab-family of equations with cubic nonlinearities, which contains the integrable modified Camassa–Holm equation (\(a = \frac{1}{3}\), \(b = 2\)) and the Novikov equation (\(a = 0\), \(b = 3\)) as two special cases. When \(3a + b \ne 3\), the ab-family of equations does not possess the \(H^1\)-norm conservation law. We give the local well-posedness results of this Cauchy problem in Besov spaces and Sobolev spaces. Furthermore, we provide a blow-up criterion, the precise blow-up scenario and a sufficient condition on the initial data for the blow-up of strong solutions to the ab-family of equations. Our blow-up analysis does not rely on the use of the conservation laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Heidelberg (2011)

    Book  Google Scholar 

  2. Brandolese, L.: Local-in-space criteria for blowup in shallow water and dispersive rod equations. Commun. Math. Phys. 330, 401–414 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  3. Brandolese, L., Cortez, M.F.: Blowup issues for a class of nonlinear dispersive wave equations. J. Differ. Equ. 256, 3981–3998 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  4. Brandolese, L., Cortez, M.F.: On permanent and breaking waves in hyperelastic rods and rings. J. Funct. Anal. 266, 6954–6987 (2014)

    Article  MathSciNet  Google Scholar 

  5. Cai, H., Chen, G., Chen, R.M., Shen, Y.N.: Lipschitz metric for the Novikov equation. Arch. Ration. Mech. Anal. 229, 1091–1137 (2018)

    Article  MathSciNet  Google Scholar 

  6. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  7. Chen, G., Chen, R.M., Liu, Y.: Existence and uniqueness of the global conservative weak solutions for the integrable Novikov equation. Indiana Univ. Math. J. 67, 2393–2433 (2018)

    Article  MathSciNet  Google Scholar 

  8. Chen, R.M., Di, H.F., Liu, Y.: Stability of peaked solitary waves for a class of cubic quasilinear shallow-water equations. Int. Math. Res. Not. (2022). https://doi.org/10.1093/imrn/rnac032

    Article  Google Scholar 

  9. Chen, R.M., Hu, T.Q., Liu, Y.: The shallow-water models with cubic nonlinearity. J. Math. Fluid Mech. 24, 49 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  10. Chen, R.M., Lian, W., Wang, D.H., Xu, R.Z.: A rigidity property for the Novikov equation and the asymptotic stability of peakons. Arch. Ration. Mech. Anal. 241, 497–533 (2021)

    Article  MathSciNet  Google Scholar 

  11. Chen, R.M., Liu, Y., Qu, C.Z., Zhang, S.H.: Oscillation-induced blow-up to the modified Camassa–Holm equation with linear dispersion. Adv. Math. 272, 225–251 (2015)

    Article  MathSciNet  Google Scholar 

  12. Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321–362 (2000)

    Article  MathSciNet  Google Scholar 

  13. Constantin, A.: On the scattering problem for the Camassa–Holm equation. Proc. R. Soc. A 457, 953–970 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  14. Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 26, 303–328 (1998)

    MathSciNet  Google Scholar 

  15. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MathSciNet  Google Scholar 

  16. Constantin, A., Gerdjikov, V.S., Ivanov, R.I.: Inverse scattering transform for the Camassa–Holm equation. Inverse Probl. 22, 2197–2207 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. Constantin, A., Kolev, B.: Integrability of invariant metrics on the diffeomorphism group of the circle. J. Nonlinear Sci. 16, 109–122 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  18. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009)

    Article  MathSciNet  Google Scholar 

  19. Constantin, A., McKean, H.P.: A shallow water equation on the circle. Commun. Pure Appl. Math. 52, 949–982 (1999)

    Article  MathSciNet  Google Scholar 

  20. Constantin, A., Strauss, W.A.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)

    Article  MathSciNet  Google Scholar 

  21. Constantin, A., Strauss, W.A.: Stability of the Camassa–Holm solitons. J. Nonlinear Sci. 12, 415–422 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  22. Danchin, R.: A few remarks on the Camassa–Holm equation. Differ. Integr. Equ. 14, 953–988 (2001)

    MathSciNet  Google Scholar 

  23. Danchin, R.: Fourier Analysis Methods for PDE’s, Lecture Notes, 14 November, 2005 https://perso.math.u-pem.fr/danchin.raphael/cours/courschine.pdf

  24. Fokas, A.S.: On a class of physically important integrable equations. Phys. D 87, 145–150 (1995)

    Article  MathSciNet  Google Scholar 

  25. Fu, Y., Gui, G.L., Liu, Y., Qu, C.Z.: On the Cauchy problem for the integrable modified Camassa–Holm equation with cubic nonlinearity. J. Differ. Equ 255, 1905–1938 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. Fuchssteiner, B.: Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation. Phys. D 95, 229–243 (1996)

    Article  MathSciNet  Google Scholar 

  27. Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys. D 4, 47–66 (1981)

    Article  MathSciNet  Google Scholar 

  28. Gao, Y., Liu, J.G.: Global convergence of a sticky particle method for the modified Camassa–Holm equation. SIAM J. Math. Anal. 49, 1267–1294 (2017)

    Article  MathSciNet  Google Scholar 

  29. Gui, G.L., Liu, Y.: On the global existence and wave-breaking criteria for the two-component Camassa–Holm system. J. Funct. Anal. 258, 4251–4278 (2010)

    Article  MathSciNet  Google Scholar 

  30. Gui, G.L., Liu, Y., Olver, P.J., Qu, C.Z.: Wave-breaking and peakons for a modified Camassa–Holm equation. Commun. Math. Phys. 319, 731–759 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  31. Guo, Z.H., Liu, X.X., Molinet, L., Yin, Z.Y.: Ill-posedness of the Camassa–Holm and related equations in the critical space. J. Differ. Equ. 266, 1698–1707 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  32. Himonas, A.A., Holliman, C.: The Cauchy problem for the Novikov equation. Nonlinearity 25, 449–479 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  33. Himonas, A.A., Holliman, C.: Non-uniqueness for the Fokas-Olver-Rosenau-Qiao equation. J. Math. Anal. Appl. 470, 647–658 (2019)

    Article  MathSciNet  Google Scholar 

  34. Himonas, A.A., Holliman, C., Kenig, C.: Construction of 2-peakon solutions and ill-posedness for the Novikov equation. SIAM J. Math. Anal. 50, 2968–3006 (2018)

    Article  MathSciNet  Google Scholar 

  35. Himonas, A.A., Mantzavinos, D.: The Cauchy problem for the Fokas-Olver-Rosenau-Qiao equation. Nonlinear Anal. 95, 499–529 (2014)

    Article  MathSciNet  Google Scholar 

  36. Himonas, A.A., Mantzavinos, D.: An \(ab\)-family of equations with peakon traveling waves. Proc. Am. Math. Soc. 144, 3797–3811 (2016)

    Article  MathSciNet  Google Scholar 

  37. Holmes, J., Puri, R.: Non-uniqueness for the \(ab\)-family of equations. J. Math. Anal. Appl. 493, 124563 (2021)

    Article  MathSciNet  Google Scholar 

  38. Hone, A.N.W., Lundmark, H., Szmigielski, J.: Explicit multipeakon solutions of Novikov’s cubically nonlinear integrable Camassa–Holm type equation. Dyn. Partial Differ. Equ. 6, 253–289 (2009)

    Article  MathSciNet  Google Scholar 

  39. Hone, A.N.W., Wang, J.P.: Integrable peakon equations with cubic nonlinearity. J. Phys. A Math. Theor. 41, 372002 (2008)

    Article  MathSciNet  Google Scholar 

  40. Jiang, Z.H., Ni, L.D.: Blow-up phenomenon for the integrable Novikov equation. J. Math. Anal. Appl. 385, 551–558 (2012)

    Article  MathSciNet  Google Scholar 

  41. Lai, S.Y.: Global weak solutions to the Novikov equation. J. Funct. Anal. 265, 520–544 (2013)

    Article  MathSciNet  Google Scholar 

  42. Lai, S.Y., Li, N., Wu, Y.H.: The existence of global strong and weak solutions for the Novikov equation. J. Math. Anal. Appl. 399, 682–691 (2013)

    Article  MathSciNet  Google Scholar 

  43. Lenells, J.: A variational approach to the stability of periodic peakons. J. Nonlinear Math. Phys. 11, 151–163 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  44. Lenells, J.: Stability for the periodic Camassa–Holm equation. Math. Scand. 97, 188–200 (2005)

    Article  MathSciNet  Google Scholar 

  45. Li, J., Liu, Y.: Stability of solitary waves for the modified Camassa–Holm equation. Ann. PDE 7, 14 (2021)

    Article  MathSciNet  Google Scholar 

  46. Liu, X.C., Liu, Y., Qu, C.Z.: Orbital stability of the train of peakons for an integrable modified Camassa–Holm equation. Adv. Math. 255, 1–37 (2014)

    Article  MathSciNet  Google Scholar 

  47. Liu, X.C., Liu, Y., Qu, C.Z.: Stability of peakons for the Novikov equation. J. Math. Pures Appl. 101, 172–187 (2014)

    Article  MathSciNet  Google Scholar 

  48. Mi, Y.S., Liu, Y., Huang, D.W., Guo, B.L.: Qualitative analysis for the new shallow-water model with cubic nonlinearity. J. Differ. Equ. 269, 5228–5279 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  49. Ni, L.D., Zhou, Y.: Well-posedness and persistence properties for the Novikov equation. J. Differ. Equ. 250, 3002–3021 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  50. Novikov, V.: Generalizations of the Camassa–Holm equation. J. Phys. A Math. Theor. 42, 342002 (2009)

    Article  MathSciNet  Google Scholar 

  51. Olver, P.J., Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E 53, 1900–1906 (1996)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  52. Puri, R.: Nonuniqueness for the \(ab\)-family of equations with peakon travelling waves on the circle. Rocky Mt. J. Math. 52, 707–715 (2022)

    Article  MathSciNet  Google Scholar 

  53. Qiao, Z.J.: A new integrable equation with cuspons and W/M-shape-peaks solitons. J. Math. Phys. 47, 112701 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  54. Qu, C.Z., Liu, X.C., Liu, Y.: Stability of peakons for an integrable modified Camassa–Holm equation with cubic nonlinearity. Commun. Math. Phys. 322, 967–997 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  55. Whitham, G.B.: Linear and Nonlinear Waves. Wiley-Interscience, New York (1974)

    Google Scholar 

  56. Wu, X., Yu, Y.H.: Non-uniform continuity of the Fokas-Olver-Rosenau-Qiao equation in Besov spaces. Monatsh. Math. 197, 381–394 (2022)

    Article  MathSciNet  Google Scholar 

  57. Wu, X.L., Guo, B.L.: Global well-posedness for the periodic Novikov equation with cubic nonlinearity. Appl. Anal. 95, 405–425 (2016)

    Article  MathSciNet  Google Scholar 

  58. Wu, X.L., Yin, Z.Y.: Global weak solutions for the Novikov equation. J. Phys. A Math. Theor. 44, 055202 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  59. Wu, X.L., Yin, Z.Y.: Well-posedness and global existence for the Novikov equation. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 11, 707–727 (2012)

    MathSciNet  Google Scholar 

  60. Wu, X.L., Yin, Z.Y.: A note on the Cauchy problem of the Novikov equation. Appl. Anal. 92, 1116–1137 (2013)

    Article  MathSciNet  Google Scholar 

  61. Yan, K., Qiao, Z.J., Yin, Z.Y.: Qualitative analysis for a new integrable two-component Camassa–Holm system with peakon and weak kink solutions. Commun. Math. Phys. 336, 581–617 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  62. Yan, W., Li, Y.S., Zhang, Y.M.: The Cauchy problem for the integrable Novikov equation. J. Differ. Equ. 253, 298–318 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  63. Yan, W., Li, Y.S., Zhang, Y.M.: The Cauchy problem for the Novikov equation. Nonlinear Differ. Equ. Appl. 20, 1157–1169 (2013)

    Article  MathSciNet  Google Scholar 

  64. Zhang, Q.T.: Global wellposedness of cubic Camassa–Holm equations. Nonlinear Anal. 133, 61–73 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of Cheng is partially supported by the National Natural Science Foundation of China (No. 12201417), and the Project funded by China Postdoctoral Science Foundation (No. 2023M733173). The work of Lin is partially supported by the National Natural Science Foundation of China (No. 12375006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Lin.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Communicated by A. Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, W., Lin, J. Blow-up Analysis for the \({\varvec{ab}}\)-Family of Equations. J. Math. Fluid Mech. 26, 22 (2024). https://doi.org/10.1007/s00021-024-00857-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-024-00857-4

Keywords

Mathematics Subject Classification

Navigation