Skip to main content
Log in

Effect of Al Content on Microstructure and Mechanical Properties of the fcc and bcc Phases of AlxCoCrFeNi High Entropy Alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In the AlxCoCrFeNi high entropy alloys (HEAs), adding Al promotes a microstructure shift from fcc to bcc or their mixtures, which increases the overall strength of the alloys. To understand the strengthening mechanism, it is crucial to study the microstructure and mechanical properties of each constitution phase with varying compositions in addition to the amounts of strengthening phases. However, systematic research on the strengthening effect of Al content in individual fcc and bcc phases is lacking. In the present work, seven AlxCoCrFeNi HEAs with different Al contents were prepared by arc melting. According to XRD, SEM and TEM observations and thermodynamic calculations, the phase constitutions of the alloys change in a sequence of fcc → fcc + A2 (disordered bcc) + B2 (ordered bcc) → A2 + B2 as the Al content increases. The addition of Al to the fcc phase generates substantial lattice distortion, but the nanoindentation hardness of the fcc phase is stabilized at about 3.6 GPa, meaning no solid solution hardening effect present in the fcc phase. However, with increasing Al content, the hardness of the bcc-based alloys increases, which is mostly attributable to the increasing amount of the B2 phase.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004). https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375–377, 213 (2004). https://doi.org/10.1016/j.msea.2003.10.257

    Article  CAS  Google Scholar 

  3. J.W. Yeh, S.K. Chen, Y.L. Chen, Frontiers in the Design of Materials, ed. by B. Raj, S. Ranganathan, S.L. Mannan, K. Bhanu Sankara Rao, M.D. Matthew, P. Shankar (CRC Press, Boca Raton, 2007), pp.31–47

    Google Scholar 

  4. D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448 (2017). https://doi.org/10.1016/j.actamat.2016.08.081

    Article  ADS  CAS  Google Scholar 

  5. Z. Liu, Z.P. Xiong, K.X. Chen, X.W. Cheng, Mater. Lett. 315, 131933 (2022). https://doi.org/10.1016/j.matlet.2022.131933

    Article  CAS  Google Scholar 

  6. N. Kumar, M. Fusco, M. Komarasamy, R.S. Mishra, M. Bourham, K.L. Murty, Nucl. Mater. 495, 154 (2017). https://doi.org/10.1016/j.jnucmat.2017.08.015

    Article  ADS  CAS  Google Scholar 

  7. Suprianto, C.L. Chen, Met. Mater. Int. 29, 420 (2023). https://doi.org/10.1007/s12540-022-01258-w

    Article  CAS  Google Scholar 

  8. G. Qin, R. Chen, H. Zheng, H. Fang, L. Wang, Y. Su, J. Guo, H. Fu, Mater. Sci. Technol. 35, 578 (2019). https://doi.org/10.1016/j.jmst.2018.10.009

    Article  CAS  Google Scholar 

  9. L.W. Lan, X.J. Wang, R.P. Guo, H.J. Yang, J.W. Qiao, Mater. Sci. Technol. 42, 85 (2020). https://doi.org/10.1016/j.jmst.2019.08.051

    Article  CAS  Google Scholar 

  10. S.K. Varma, F. Sanchez, S. Moncayo, C.V. Ramana, Mater. Sci. Technol. 38, 189 (2020). https://doi.org/10.1016/j.jmst.2019.09.005

    Article  CAS  Google Scholar 

  11. B. Gwalani, S. Gorsse, D. Choudhuri, Y.F. Zheng, R.S. Mishra, R. Banerjee, Scr. Mater. 162, 18 (2019). https://doi.org/10.1016/j.scriptamat.2018.10.023

    Article  CAS  Google Scholar 

  12. Y.L. Zhao, T. Yang, Y.R. Li, L. Fan, B. Han, Z.B. Jiao, D. Chen, C.T. Liu, J.J. Kai, Acta Mater. 188, 517 (2020). https://doi.org/10.1016/j.actamat.2020.02.028

    Article  ADS  CAS  Google Scholar 

  13. B. Gwalani, S. Gorsse, D. Choudhuri, M. Styles, Y.F. Zheng, R.S. Mishra, R. Banerjee, Acta Mater. 153, 169 (2018). https://doi.org/10.1016/j.actamat.2018.05.009

    Article  ADS  CAS  Google Scholar 

  14. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102, 187 (2016). https://doi.org/10.1016/j.actamat.2015.08.076

    Article  ADS  CAS  Google Scholar 

  15. B. Gwalani, V. Soni, M. Lee, S.A. Mantri, Y. Ren, R. Banerjee, Mater. Design 121, 254 (2017). https://doi.org/10.1016/j.matdes.2017.02.072

    Article  CAS  Google Scholar 

  16. S.G. Ma, Y. Zhang, Mater. Sci. Eng. A 532, 480 (2012). https://doi.org/10.1016/j.msea.2011.10.110

    Article  CAS  Google Scholar 

  17. G. Qin, W.T. Xue, C.L. Fan, R.R. Chen, L. Wang, Y.Q. Su, H.S. Ding, J.J. Guo, Mater. Sci. Eng. A 710, 200 (2018). https://doi.org/10.1016/j.msea.2017.10.088

    Article  CAS  Google Scholar 

  18. Y.D. Wu, Y.H. Cai, X.H. Chen, T. Wang, J.J. Si, L. Wang, Y.D. Wang, X.D. Hui, Mater. Design 83, 651 (2015). https://doi.org/10.1016/j.matdes.2015.06.072

    Article  CAS  Google Scholar 

  19. C.L. Wang, C.J. Liang, M.J. Yang, C. Huang, Z.F. Yao, B. Qiu, K.X. Zhang, Y.G. Xie, M.L. Liang, W.J. Liu, J.J. Yang, S.F. Zhou, Mater. Design 221, 110940 (2022). https://doi.org/10.1016/j.matdes.2022.110940

    Article  CAS  Google Scholar 

  20. Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Appl. Phys. Lett. 90, 181904 (2007). https://doi.org/10.1063/1.2734517

    Article  ADS  CAS  Google Scholar 

  21. W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Intermetallics 26, 44 (2012). https://doi.org/10.1016/j.intermet.2012.03.005

    Article  CAS  Google Scholar 

  22. Y.-F. Kao, T.-J. Chen, S.-K. Chen, J.-W. Yeh, J. Alloys Compd. 488, 57 (2009). https://doi.org/10.1016/j.jallcom.2009.08.090

    Article  CAS  Google Scholar 

  23. K.B. Zhang, Z.Y. Fu, Intermetallics 22, 24 (2012). https://doi.org/10.1016/j.intermet.2011.10.010

    Article  CAS  Google Scholar 

  24. M. Zhang, L.J. Yao, M. Zhu, Y.Q. Liu, Z.Y. Jian, J. Mater. Eng. Perform. 30, 1472 (2021). https://doi.org/10.1007/s11665-020-05411-7

    Article  CAS  Google Scholar 

  25. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Acta Mater. 62, 105 (2014). https://doi.org/10.1016/j.actamat.2013.09.037

    Article  ADS  CAS  Google Scholar 

  26. I. Basu, V. Ocelík, J.T. De Hosson, Acta Mater. 157, 83 (2018). https://doi.org/10.1016/j.actamat.2018.07.031

    Article  ADS  CAS  Google Scholar 

  27. G.F. Shang, W.S. Zheng, J.J. Wang, X.-G. Lu, Mater. Sci. Eng. A 846, 143294 (2022). https://doi.org/10.1016/j.msea.2022.143294

    Article  CAS  Google Scholar 

  28. A. Takeuchi, A. Inoue, Mater. Trans. JIM 41, 1372 (2000). https://doi.org/10.2320/matertrans1989.41.1372

    Article  CAS  Google Scholar 

  29. S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109, 103505 (2011). https://doi.org/10.1063/1.3587228

    Article  ADS  CAS  Google Scholar 

  30. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008). https://doi.org/10.1002/adem.200700240

    Article  CAS  Google Scholar 

  31. T. Egami, Y. Waseda, J. Non-Cryst. Solids 64, 113 (1984). https://doi.org/10.1016/0022-3093(84)90210-2

  32. X. Yang, Y. Zhang, Mater. Chem. Phys. 132, 233 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.021

    Article  CAS  Google Scholar 

  33. J.O. Andersson, T. Helander, L.H. Hoglund, P.F. Shi, B. Sundman, Calphad 26, 273 (2002). https://doi.org/10.1016/S0364-5916(02)00037-8

    Article  CAS  Google Scholar 

  34. Thermo-Calc Software (2020). TCHEA4. Available online at: https://www.thermocalc.com/products-services/databases/thermodynamic/ (accessed May 20, 2020)

  35. Z.J. Sun, X.P. Tan, C.C. Wang, M. Descoins, D. Mangelinck, S.B. Tor, E.A. Jägle, S. Zaefferer, D. Raabe, Acta Mater. 204, 116505 (2021). https://doi.org/10.1016/j.actamat.2020.116505

    Article  CAS  Google Scholar 

  36. J. Charkhchian, A. Zarei-Hanzaki, A. Moshiri, H.R. Abedi, T.M. Schwarz, R. Lawitzki, G. Schmitz, K. Chadha, C. Aranas Jr., J. Shen, J.P. Oliveira, Adv. Eng. Mater. 25, 2300164 (2023). https://doi.org/10.1002/adem.202300164

    Article  CAS  Google Scholar 

  37. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992). https://doi.org/10.1557/JMR.1992.1564

    Article  ADS  CAS  Google Scholar 

  38. J.E. Zorzi, C.A. Perottoni, Mater. Sci. Eng. A 574, 25 (2013). https://doi.org/10.1016/j.msea.2013.03.008

    Article  CAS  Google Scholar 

  39. A.C. Fischer-Cripps, Introduction to Contact Mechanics (Springer, New York, 2000)

    Google Scholar 

  40. R.L. Fleischer, Acta Metall. 11, 203 (1963). https://doi.org/10.1016/0001-6160(63)90213-X

    Article  CAS  Google Scholar 

  41. T.H. Courtney, Mechanical Behaviour of Materials (McGraw-Hill, New York, 1990)

  42. S. Qiu, X.C. Zhang, J. Zhou, S. Cao, H. Yu, Q.M. Hu, Z.M. Sun, J. Alloys Compd. 846, 156321 (2020). https://doi.org/10.1016/j.jallcom.2020.156321

    Article  CAS  Google Scholar 

  43. G.F. Shang, L. Jiang, Z.-Z. Liu, X.-G. Lu, J. Alloys Compd. 917, 165513 (2022). https://doi.org/10.1016/j.jallcom.2022.165513

    Article  CAS  Google Scholar 

  44. G.J. Diao, M.Y. Wu, A.Q. He, Z. Xu, S.E. Mousavi, D.Y. Li, Lubricants 11, 392 (2023). https://doi.org/10.3390/lubricants11090392

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Genfeng Shang or Xiao-Gang Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, G., Wang, J., Liu, ZZ. et al. Effect of Al Content on Microstructure and Mechanical Properties of the fcc and bcc Phases of AlxCoCrFeNi High Entropy Alloys. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-024-01635-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-024-01635-7

Keywords

Navigation