Skip to main content
Log in

Effect of Initial Microstructures on Planar Tensile Anisotropy and Fatigue Crack Growth of Creep Age Formed 2050 Al–Li Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This work investigates the influence of initial microstructure characteristics on the creep age forming behavior, mechanical anisotropy and fatigue crack growth resistance of creep age formed components. Components made by 2050 Al–Li alloy with fine, coarse and fibrous grain structures were prepared. The results indicate that the components with fibrous grains significantly increases the creep strain, which were generated by large-strain pre-deformation. Additionally, these components exhibit the highest yield and ultimate tensile strengths. On the other hand, components with coarse grains demonstrate superior fatigue crack growth resistance compared to other microstructures. Conversely, components with fine grains exhibit the lowest in-plane anisotropy value. The fatigue crack growth resistance of the three microstructures follows a descending order of coarse grains, fine grains, and fibrous grains. For applications requiring less anisotropy, the AA2050 alloy with fine grains is recommended. Conversely, the alloy with coarse grains is suitable for components subjected to cyclic loading. Lastly, the alloy with fibrous grains is ideal for structural components due to its high ultimate tensile strength and creep strain.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R.K. Gupta, N. Nayan, G. Nagasireesha, S.C. Sharma, Development and characterization of Al–Li alloys. Mater. Sci. Eng. A 420, 228–234 (2006). https://doi.org/10.1016/j.msea.2006.01.045

    Article  CAS  Google Scholar 

  2. Ph. Lequeu, K.P. Smith, A. Daniélou, Aluminum-copper-lithium alloy 2050 developed for medium to thick plate. J. Mater. Eng. Perform. 19, 841–847 (2009). https://doi.org/10.1007/s11665-009-9554-z

    Article  CAS  Google Scholar 

  3. L.H. Zhan, J.G. Lin, T.A. Dean, A review of the development of creep age forming: experimentation, modelling and applications. Int. J. Mach. Tools Manuf. 51, 1–17 (2011). https://doi.org/10.1016/j.ijmachtools.2010.08.007

    Article  Google Scholar 

  4. M.C. Holman, Autoclave age forming large aluminum aircraft panels. J. Mech. Work. Technol. 20, 477–488 (1989). https://doi.org/10.1016/0378-3804(89)90055-7

    Article  Google Scholar 

  5. J. Schijve, Fatigue damage in aircraft structures, not wanted, but tolerated? Int. J. Fatigue 31, 998–1011 (2009). https://doi.org/10.1016/j.ijfatigue.2008.05.016

    Article  Google Scholar 

  6. Y.Q. Chen, S.P. Pan, M.Z. Zhou, D.Q. Yi, D.Z. Xu, Y.F. Xu, Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524–T3 Al alloy. Mater. Sci. Eng. A 580, 150–158 (2013). https://doi.org/10.1016/j.msea.2013.05.053

    Article  CAS  Google Scholar 

  7. N. Kamp, N. Gao, M.J. Starink, I. Sinclair, Influence of grain structure and slip planarity on fatigue crack growth in low alloying artificially aged 2xxx aluminium alloys. Int. J. Fatigue 29, 869–878 (2007). https://doi.org/10.1016/j.ijfatigue.2006.08.005

    Article  CAS  Google Scholar 

  8. M.N. Desmukh, R.K. Pandey, A.K. Mukhopadhyay, Effect of aging treatments on the kinetics of fatigue crack growth in 7010 aluminum alloy. Mater. Sci. Eng. A 435–436, 318–326 (2006). https://doi.org/10.1016/j.msea.2006.07.063

    Article  CAS  Google Scholar 

  9. C. Liu, Y.L. Liu, L.Y. Ma, S.B. Li, Precipitate evolution and fatigue crack growth in creep and artificially aged aluminum alloy. Metals 8, 1039 (2018). https://doi.org/10.3390/met8121039

    Article  CAS  Google Scholar 

  10. Y. Li, Z. Shi, J.G. Lin, Y.L. Yang, B.M. Huang, T.F. Chung, J.R. Yang, Experimental investigation of tension and compression creep-ageing behaviour of AA2050 with different initial tempers. Mater. Sci. Eng. A 657, 299–308 (2016). https://doi.org/10.1016/j.msea.2016.01.074

    Article  CAS  Google Scholar 

  11. L.B. Hu, L.H. Zhan, Z.L. Liu, R.L. Shen, Y.L. Yang, Z.Y. Ma, M. Liu, J. Liu, Y.G. Yang, X. Wang, The effects of pre-deformation on the creep aging behavior and mechanical properties of Al–Li–S4 alloys. Mater. Sci. Eng. A 703, 496–502 (2017). https://doi.org/10.1016/j.msea.2017.07.068

    Article  CAS  Google Scholar 

  12. Y. Dong, L.Y. Ye, J.G. Tang, X.D. Liu, Q. Sun, The effects of temperature on the creep-aging behavior and mechanical properties of AA2050-T34 alloy. Mater. Sci. Eng. A 796, 140010 (2020). https://doi.org/10.1016/j.msea.2020.140010

    Article  CAS  Google Scholar 

  13. Y. Dong, L.Y. Ye, X.D. Liu, B. Ke, T.J. Hu, Creep-aging behaviors of Al-Cu-Li alloy with different grain sizes. J. Alloys Compd. 911, 164992 (2022). https://doi.org/10.1016/j.jallcom.2022.164992

    Article  CAS  Google Scholar 

  14. Y. Dong, L.Y. Ye, X.D. Liu, B. Ke, T.J. Hu, Effects of large strain pre-deformation on creep age behavior and microstructural evolution of an Al-Cu-Li alloy. Mater. Lett. 324, 132699 (2022). https://doi.org/10.1016/j.matlet.2022.132699

    Article  CAS  Google Scholar 

  15. J.A. Wagner, R.P. Gangloff, Fracture toughness of an Al–Li–Cu-In alloy. Scr. Metall. Mater. 26, 1779–1784 (1992). https://doi.org/10.1016/0956-716X(92)90552-P

    Article  Google Scholar 

  16. G.H. Bray, M. Glazov, R.J. Rioja, D. Li, R.P. Gangloff, Effect of artificial aging on the fatigue crack propagation resistance of 2000 series aluminum alloys. Int. J. Fatigue 23, 265–276 (2001). https://doi.org/10.1016/S0142-1123(01)00159-1

    Article  Google Scholar 

  17. N. Akhtar, S.J. Wu, Macromechanics study of stable fatigue crack growth in Al–Cu–Li–Mg–Ag alloy. Fatigue Fract. Eng. Mater. Struct. 40, 233–244 (2017). https://doi.org/10.1111/ffe.12489

    Article  Google Scholar 

  18. N. Kamp, M.R. Parry, K.D. Singh, I. Sinclair, Analytical and finite element modelling of roughness induced crack closure. Acta Mater. 52, 343–353 (2004). https://doi.org/10.1016/j.actamat.2003.09.019

    Article  ADS  CAS  Google Scholar 

  19. W. Hu, J.Q. Chen, S. Han, J.J. Xu, J.L. Miao, T. Xing, R.G. Guan, Initial report on the oriented-precipitation of T1-phase in creep-aged Al-Cu-Li single crystal. Met. Mater. Int. 29, 1382–1389 (2023). https://doi.org/10.1007/s12540-022-01307-4

    Article  CAS  Google Scholar 

  20. M.J. Starink, N. Gao, N. Kamp, S.C. Wang, P.D. Pitcher, I. Sinclair, Relations between microstructure, precipitation, age-formability and damage tolerance of Al-Cu-Mg-Li (Mn, Zr, Sc) alloys for age forming. Mater. Sci. Eng. A 418, 241–249 (2006). https://doi.org/10.1016/j.msea.2005.11.023

    Article  CAS  Google Scholar 

  21. P.W. Li, H.Z. Li, X.P. Liang, L. Huang, Fatigue crack growth behavior of Al-4.41Cu-0.69Mg-0.64Si-0.52Mn alloy forged at different temperatures. JOM 71, 419–425 (2019). https://doi.org/10.1007/s11837-018-3126-3

    Article  ADS  CAS  Google Scholar 

  22. J.G. Tang, B. Yu, J. Zhang, F.S. Xu, C.J. Bao, Effects of pre-deformation mode and strain on creep aging bend-forming process of AlCuLi alloy. Trans. Nonferrous Met. Soc. China 30, 1227–1237 (2020). https://doi.org/10.1016/S1003-6326(20)65291-8

    Article  CAS  Google Scholar 

  23. Y. Estrin, A. Vinogradov, Fatigue behaviour of light alloys with ultrafine grain structure produced by severe plastic deformation: an overview. Int. J. Fatigue 32, 898–907 (2010). https://doi.org/10.1016/j.ijfatigue.2009.06.022

    Article  CAS  Google Scholar 

  24. S.S. Zhang, G.L. Zhang, C.X. Wang, New Material Mechanics, 2nd edn. (China Machine Press, Beijing, 2009), p.143

    Google Scholar 

  25. M. Houria, N. Matougui, B. Mehdi, N. Kherrouba, M. Jahazi, Effect of plastic anisotropy on the kinetics of static softening in AA2024–T3 aluminum alloy. Met. Mater. Int. 28, 2042–2058 (2022). https://doi.org/10.1007/s12540-021-01126-z

    Article  Google Scholar 

  26. S.A. Saltikov, The determination of the size distribution of particles in an opaque material from a measurement of the size distribution of their sections, in Stereol: Proceedings of the Second International Congress for STEREOLOGY, ed. by H. Elias. Chicago, 8–13 April 1967 (1967). https://doi.org/10.1007/978-3-642-88260-9_31

    Article  Google Scholar 

  27. Y.Z. Li, G.J. Zeng, D.D. Lu, Z.Z. Liu, S.X. Deng, P.C. Ma, Y.L. Chen, R.F. Zhang, J.F. Li, Effect of sub-structure and precipitation behavior on mechanical properties of Al–xCu–Li alloys. Met. Mater. Int. 29, 3204–3221 (2023). https://doi.org/10.1007/s12540-023-01439-1

    Article  CAS  Google Scholar 

  28. J. Zhang, C. Wang, Y. Zhang, Y.L. Deng, Effects of creep aging upon Al-Cu-Li alloy: strength, toughness and microstructure. J. Alloys Compd. 764, 452–459 (2018). https://doi.org/10.1016/j.jallcom.2018.06.103

    Article  CAS  Google Scholar 

  29. N. Zhao, C.Y. Ban, Developing a high-strength Al–Mg–Si alloy with improved electrical conductivity by a novel ECAP route. Met. Mater. Int. 28, 2513–2528 (2022). https://doi.org/10.1007/s12540-021-01152-x

    Article  CAS  Google Scholar 

  30. P. Paris, F. Erdogan, A critical analysis of crack propagation laws. J. Basic Eng. 85, 528–534 (1963). https://doi.org/10.1115/1.3656900

    Article  Google Scholar 

  31. P.S. De, R.S. Mishra, C.B. Smith, Effect of microstructure on fatigue life and fracture morphology in an aluminum alloy. Scr. Mater. 60, 500–503 (2009). https://doi.org/10.1016/j.scriptamat.2008.11.032

    Article  CAS  Google Scholar 

  32. H. Vafaeenezhad, M. Chegini, A. Kalaki, H. Serajian, Micromechanical finite element simulation of low cycle fatigue damage occurring during sliding wear test of ECAP-processed AA7075 alloy. Met. Mater. Int. 30, 143–166 (2024). https://doi.org/10.1007/s12540-023-01479-7

    Article  CAS  Google Scholar 

  33. J.Y. Chen, H. Yin, Q.P. Sun, Effects of grain size on fatigue crack growth behaviors of nanocrystalline superelastic NiTi shape memory alloys. Acta Mater. 195, 141–150 (2020). https://doi.org/10.1016/j.actamat.2020.05.008

    Article  ADS  CAS  Google Scholar 

  34. K.U. Snowden, E.G. Mehrtens, The calculation of the relaxed creep strain in four-point bending tests. J. Mater. Sci. Lett. 16, 278–280 (1997). https://doi.org/10.1023/A:1018592816349

    Article  CAS  Google Scholar 

  35. D. Feng, X.D. Li, X.M. Zhang, S.D. Liu, J.T. Wang, Y. Liu, The novel heat treatments of aluminium alloy characterized by multistage and non-isothermal routes: a review. J. Cent. South Univ. 30, 2833–2866 (2023). https://doi.org/10.1007/s11771-023-5439-9

    Article  CAS  Google Scholar 

  36. D. Feng, G.Y. Wang, H.M. Chen, X.M. Zhang, Effect of grain size inhomogeneity of ingot on dynamic softening behavior and processing map of Al-8Zn-2Mg-2Cu alloy. Met. Mater. Int. 24, 195–204 (2018). https://doi.org/10.1007/s12540-017-7324-2

    Article  CAS  Google Scholar 

  37. C.A. Davy, K. Han, P.N. Kalu, S.T. Bole, Examinations of Cu-Ag composite conductors in sheet forms. IEEE Trans. Appl. Supercond. 18, 560–563 (2008). https://doi.org/10.1109/TASC.2008.922510

    Article  ADS  CAS  Google Scholar 

  38. F. Wei, Z.G. Zhang, B. Shi, C. Yang, Effect of rolling deformation on microstructure and mechanical properties of Mg-6Sn-3Al-1Zn alloy. Mater. Res. Express 7, 026516 (2020). https://doi.org/10.1088/2053-1591/ab6e84

    Article  ADS  CAS  Google Scholar 

  39. G.V. Stepanov, A.V. Shirokov, Modeling of crack propagation kinetics. Strength Mater. 42, 426–431 (2010). https://doi.org/10.1007/s11223-010-9233-1

    Article  Google Scholar 

  40. M. Balbi, M. Avalos, A. El Bartali, I. Alvarez-Armas, Microcrack growth and fatigue behavior of a duplex stainless steel. Int. J. Fatigue 31, 2006–2013 (2009). https://doi.org/10.1016/j.ijfatigue.2008.12.007

    Article  CAS  Google Scholar 

  41. C.H. Wu, D. Feng, J.J. Ren, Q.H. Zang, J.C. Li, S.D. Liu, X.M. Zhang, Effect of non-isothermal retrogression and re-ageing on through-thickness homogeneity of microstructure and properties of Al-8Zn-2Mg-2Cu alloy thick plate. J. Cent. South Univ. 3, 960–972 (2022). https://doi.org/10.1007/s11771-022-4960-6

    Article  CAS  Google Scholar 

  42. D.L. Chen, M.C. Chaturvedi, Near-threshold fatigue crack growth behavior of 2195 aluminum-lithium-alloy-prediction of crack propagation direction and influence of stress ratio. Metall. Mater. Trans. A 31, 1531–1541 (2000). https://doi.org/10.1007/s11661-000-0164-5

    Article  Google Scholar 

  43. T.F. Morgeneyer, T. Taillandier-Thomas, L. Helfen, T. Baumbach, I. Sinclair, S. Roux, F. Hild, In situ 3-D observation of early strain localization during failure of thin Al alloy (2198) sheet. Acta Mater. 69, 78–91 (2014). https://doi.org/10.1016/j.actamat.2014.01.033

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial supports of the National Natural Science Foundation of China with Grant numbers U21B6004 and U21A20130.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingying Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Ye, L., Wang, P. et al. Effect of Initial Microstructures on Planar Tensile Anisotropy and Fatigue Crack Growth of Creep Age Formed 2050 Al–Li Alloy. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-024-01634-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-024-01634-8

Keywords

Navigation