Skip to main content
Log in

Mechanism underlying the rapid growth of Phalaenopsis equestris induced by 60Co-γ-ray irradiation

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Gamma (γ)-ray irradiation is one of the important modern breeding methods. Gamma-ray irradiation can affect the growth rate and other characteristics of plants. Plant growth rate is crucial for plants. In horticultural crops, the growth rate of plants is closely related to the growth of leaves and flowering time, both of which have important ornamental value. In this study, 60Co-γ-ray was used to treat P. equestris plants. After irradiation, the plant's leaf growth rate increased, and sugar content and antioxidant enzyme activity increased. Therefore, we used RNA-seq technology to analyze the differential gene expression and pathways of control leaves and irradiated leaves. Through transcriptome analysis, we investigated the reasons for the rapid growth of P. equestris leaves after irradiation. In the analysis, genes related to cell wall relaxation and glucose metabolism showed differential expression. In addition, the expression level of genes encoding ROS scavenging enzyme synthesis regulatory genes increased after irradiation. We identified two genes related to P. equestris leaf growth using VIGS technology: PeNGA and PeEXPA10. The expression of PeEXPA10, a gene related to cell wall expansion, was down-regulated, cell wall expansion ability decreased, cell size decreased, and leaf growth rate slowed down. The TCP-NGATHA (NGA) molecular regulatory module plays a crucial role in cell proliferation. When the expression of the PeNGA gene decreases, the leaf growth rate increases, and the number of cells increases. After irradiation, PeNGA and PeEXPA10 affect the growth of P. equestris leaves by influencing cell proliferation and cell expansion, respectively. In addition, many genes in the plant hormone signaling pathway show differential expression after irradiation, indicating the crucial role of plant hormones in plant leaf growth. This provides a theoretical basis for future research on leaf development and biological breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Aguilar-Martínez JA, Sinha N (2013) Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development. Front Plant Sci 4:406

    Article  PubMed  PubMed Central  Google Scholar 

  • Alarkon K, Bozova L, Stoeva N (1987) Index of earliness in tomato plants produced by irradiation of seeds and transplants with gamma rates. Rastenievyd Nauk 24(2):40–43

    Google Scholar 

  • Alvarez JP, Goldshmidt A, Efroni I et al (2009) The NGATHA distal organ development genes are essential for style specification in Arabidopsis. Plant Cell 21(5):1373–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders S, Huber W (2012) Differential expression of RNA-Seq data at the gene level–the DESeq package. Heidelb Ger: Eur Mol Biol Lab (EMBL) 10:f1000research

    Google Scholar 

  • Anderson CT (2016) We be jammin’: an update on pectin biosynthesis, trafficking and dynamics. J Exp Bot 67(2):495–502

    Article  CAS  PubMed  Google Scholar 

  • Anderson CT (2019) Pectic polysaccharides in plants: structure, biosynthesis, functions, and applications. Extracellular sugar-based biopolymers matrices. Springer, Cham, pp 487–514

    Chapter  Google Scholar 

  • Ballester P, Navarrete-Gómez M, Carbonero P et al (2015) Leaf expansion in Arabidopsis is controlled by a TCP-NGA regulatory module likely conserved in distantly related species. Physiol Plant 155(1):21–32

    Article  CAS  PubMed  Google Scholar 

  • Bar M, Ori N (2014) Leaf development and morphogenesis. Development 141(22):4219–4230

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Baldwin LA (2000) Radiation hormesis: the demise of a legitimate hypothesis. Hum Exp Toxicol 19(1):76–84

    Article  CAS  PubMed  Google Scholar 

  • Chae K, Isaacs CG, Reeves PH et al (2012) Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation. Plant J 71(4):684–769

    Article  CAS  PubMed  Google Scholar 

  • Charbaji T, Nabulsi I (1999) Effect of low doses of gamma irradiation on in vitro growth of grapevine. Plant Cell Tissue Organ Cult 57(2):129–132

    Article  Google Scholar 

  • Choi J, Lee J, Kim K et al (2012) Functional identification of OsHk6 as a homotypic cytokinin receptor in rice with preferential affinity for iP. Plant Cell Physiol 53(7):1334–1343

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2015) Plant expansins: diversity and interactions with plant cell walls. Curr Opin Plant Biol 25:162–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dathe W, Rönsch H, Preiss A et al (1981) Endogenous plant hormones of the broad bean, Vicia faba L. (-)-jasmonic acid, a plant growth inhibitor in pericarp. Planta 153(6):530–535

    Article  CAS  PubMed  Google Scholar 

  • Davière JM, De Lucas M, Prat S (2008) Transcriptional factor interaction: a central step in DELLA function. Curr Opin Genet Dev 18(4):295–303

    Article  PubMed  Google Scholar 

  • Demura T, Ye ZH (2010) Regulation of plant biomass production. Curr Opin Plant Biol 13(3):298–303

    Article  Google Scholar 

  • Fourquin C, Ferrándiz C (2014) The essential role of NGATHA genes in style and stigma specification is widely conserved across eudicots. New Phytol 202(3):1001–1013

    Article  CAS  PubMed  Google Scholar 

  • Givnish TJ, Spalink D, Ames M et al (2016) Orchid historical biogeography, diversification, Antarctica and the paradox of orchid dispersal. J Biogeogr 43(10):1905–1916

    Article  Google Scholar 

  • Gonzalez N, Vanhaeren H, Inzé D (2012) Leaf size control: complex coordination of cell division and expansion. Trends Plant Sci 17(6):332–340

    Article  CAS  PubMed  Google Scholar 

  • Han S, Min MK, Lee SY et al (2017) Modulation of ABA signaling by altering VxGΦL motif of PP2Cs in Oryza sativa. Mol Plant 10(9):1190–1205

    Article  CAS  PubMed  Google Scholar 

  • Hepworth J, Lenhard M (2014) Regulation of plant lateral-organ growth by modulating cell number and size. Curr Opin Plant Biol 17:36–42

    Article  PubMed  Google Scholar 

  • Hou K, Wu W, Gan SS (2013) SAUR36, a small auxin up RNA gene, is involved in the promotion of leaf senescence in Arabidopsis. Plant Physiol 161(2):1002–1009

    Article  CAS  PubMed  Google Scholar 

  • Jackson PK (2008) The hunt for cyclin. Cell 134(2):199–202

    Article  CAS  PubMed  Google Scholar 

  • Kalve S, De Vos D, Beemster GTS (2014) Leaf development: a cellular perspective. Front Plant Sci 5:362

    Article  PubMed  PubMed Central  Google Scholar 

  • Kant S, Bi YM, Zhu T et al (2009) SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Physiol 151(2):691–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kende H, Bradford KT, Brummell DA et al (2004) Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol Biol 55:311–314

    Article  CAS  PubMed  Google Scholar 

  • Kovacs E, Keresztes A (2002) Effect of gamma and UV-B/C radiation on plant cells. Micron 33(2):199–210

    Article  CAS  PubMed  Google Scholar 

  • Kuroha T, Tokunaga H, Kojima M et al (2009) Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21(10):3152–3169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon SH, Lee BH, Kim EY et al (2009) Overexpression of a Brassica rapa NGATHA gene in Arabidopsis thaliana negatively affects cell proliferation during lateral organ and root growth. Plant Cell Physiol 50(12):2162–2173

    Article  CAS  PubMed  Google Scholar 

  • Leyser O (2001) Auxin signalling: the beginning, the middle and the end. Curr Opin Plant Biol 4(5):382–386

    Article  ADS  CAS  PubMed  Google Scholar 

  • Li H S, Sun Q, Zhao S J, et al (2000) Principles and techniques of plant physiological biochemical experiment. High Educ Beijing, 195–197.

  • Li C, Dong N, Zhao Y et al (2021) A review for the breeding of orchids: current achievements and prospects. Hortic Plant J 7(5):380–392

    Article  CAS  Google Scholar 

  • Lin CS, Hsu CT, Liao DC et al (2016) Transcriptome-wide analysis of the MADS-box gene family in the orchid Erycina pusilla. Plant Biotechnol J 14(1):284–298

    Article  CAS  PubMed  Google Scholar 

  • Maity JP, Mishra D, Chakraborty A et al (2005) Modulation of some quantitative and qualitative characteristics in rice (Oryza sativa L.) and mung (Phaseolus mungo L.) by ionizing radiation. Radiat Phys Chem 74(5):391–394

    Article  ADS  CAS  Google Scholar 

  • Qi X, Zhu Y, Li S et al (2020) Identification of genes related to mesocarp development in cucumber. Hortic Plant J 6(5):293–300

    Article  Google Scholar 

  • Saidi A, Hajibarat Z (2021) Phytohormones: Plant switchers in developmental and growth stages in potato. J Genet Eng Biotechnol 19(1):1–17

    Article  Google Scholar 

  • Santiago J, Rodrigues A, Saez A et al (2009) Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J 60(4):575–588

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Datta PS (2010) Gamma irradiation to improve plant vigour, grain development, and yield attributes of wheat. Radiat Phys Chem 79(2):139–143

    Article  ADS  CAS  Google Scholar 

  • Somerville C, Bauer S, Brininstool G et al (2004) Toward a systems approach to understanding plant cell walls. Science 306(5705):2206–2211

    Article  ADS  CAS  PubMed  Google Scholar 

  • Spartz AK, Ren H, Park MY et al (2014) SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in Arabidopsis. Plant Cell 26(5):2129–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun S, Wang H, Yu H et al (2013) GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation. J Exp Bot 64(6):1637–1647

    Article  CAS  PubMed  Google Scholar 

  • Szymanski DB, Cosgrove DJ (2009) Dynamic coordination of cytoskeletal and cell wall systems during plant cell morphogenesis. Curr Biol 19(17):R800–R811

    Article  CAS  PubMed  Google Scholar 

  • Trigueros M, Navarrete-Gómez M, Sato S et al (2009) The NGATHA genes direct style development in the Arabidopsis gynoecium. Plant Cell 21(5):1394–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukaya H (2014) Comparative leaf development in angiosperms. Curr Opin Plant Biol 17:103–109

    Article  PubMed  Google Scholar 

  • Upton AC (2001) Radiation hormesis: data and interpretations. Crit Rev Toxicol 31(4–5):681–695

    Article  CAS  PubMed  Google Scholar 

  • Vandepoele K, Raes J, De Veylder L et al (2002) Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 14(4):903–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vercruysse J, Baekelandt A, Gonzalez N et al (2020) Molecular networks regulating cell division during Arabidopsis leaf growth. J Exp Bot 71(8):2365–2378

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Ann Bot 111(6):1021–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Liu F, Chen C et al (2014) The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars. Front Plant Sci 5:569

    Article  PubMed  PubMed Central  Google Scholar 

  • Williamson RE, Burn JE, Birch R et al (2001) Morphology ofrsw1, a cellulose-deficient mutant of Arabidopsis thaliana. Protoplasma 215(1):116–127

    Article  CAS  PubMed  Google Scholar 

  • Xue-Xuan X, Hong-Bo S, Yuan-Yuan M et al (2010) Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions. Crit Rev Biotechnol 30(3):222–230

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H (2018) Mutation breeding of ornamental plants using ion beams. Breed Sci 68:17086

    Article  Google Scholar 

  • Yamaguchi T, Yano S, Tsukaya H (2010) Genetic framework for flattened leaf blade formation in unifacial leaves of Juncus prismatocarpus. Plant Cell 22(7):2141–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK et al (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11(2):1–12

    Article  Google Scholar 

  • Zhang S, Wang X (2017) One new kind of phytohormonal signaling integrator: up-and-coming GASA family genes. Plant Signal Behav 12(2):e1226453

    Article  MathSciNet  PubMed  Google Scholar 

  • Zhang JW, Sun JX, Guo WJ et al (2016) Study on the Relationship between leaf growth curve and accumulated temperature of Phalaenopsis. Chin Agric Sci Bull 32(1):113–117

    CAS  Google Scholar 

  • Zhang J, Shi X, Liu H, Ma G et al (2018) Study on the differential accumulation of anthocyanin in different-colored phalaenopsis based on transcriptomics. Mol Plant Breed 16(14):4530–4542

    Google Scholar 

  • Zhang LZ, Zhang X, Zuo XY et al (2019) Effects of exogenous glucose treatment on soluble sugar and expression of related genes during floral bud differentiation stage in terminal spur buds of’Nagafu 2’apple. Acta Hortic Sin 46(1):11–24

    MathSciNet  Google Scholar 

  • Zhong C, Xu H, Ye S et al (2015) Gibberellic acid-stimulated Arabidopsis6 serves as an integrator of gibberellin, abscisic acid, and glucose signaling during seed germination in Arabidopsis. Plant Physiol 169(3):2288–2303

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program (grant 2018YFD1000400, Ministry of Science and Technology of the People’s Republic of China); Ning xia Hui Autonomous Region key research and development program (2022BBF02041); Shanghai Engineering Research Center of Plant Germplasm Resources (17DZ2252700).

Author information

Authors and Affiliations

Authors

Contributions

FM conceived the project and designed the study; YM and WL performed the experiments, analyze data and wrote the article; DP and GH provided technical assistance to YM and YG; WL, and ZS test the physiological indexes of the materials after irradiation; YM, YXG, FM and DP revised the article. All of the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Donghui Peng or Feng Ming.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Bing Yang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yang Meng is the sole first author.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 144 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Li, W., Guan, Y. et al. Mechanism underlying the rapid growth of Phalaenopsis equestris induced by 60Co-γ-ray irradiation. Mol Genet Genomics 299, 13 (2024). https://doi.org/10.1007/s00438-024-02102-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00438-024-02102-z

Keywords

Navigation