Skip to main content
Log in

Effects of temperature variation on the life cycle of the forensically important Calliphoridae fly Chrysomya rufifacies (Macquart 1843) (Diptera)

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

In the field of forensic entomology, Chrysomya rufifacies (Macquart 1843) (Diptera: Calliphoridae) has proven to be an important species for postmortem interval (PMI) assessment in criminal investigations. The developmental patterns of C. rufifacies exhibit temperature-dependent variations that are geographically specific, and these variations are influenced by seasonal changes. Hence, understanding the geographically specific development patterns of C. rufifacies in response to temperature and seasonal changes is crucial for improving the accuracy of PMI predictions. In the present study, we examined the developmental rates of C. rufifacies across a temperature gradient (20 °C, 25 °C, 30 °C, 35 °C, and 40 °C). Primary objective of present study was to gather precise developmental data essential for calculating the post-mortem interval (PMI) within varying temperature ranges. Furthermore, we investigated the influence of seasonal variations, encompassing the summer, rainy and winter seasons, on the growth and developmental patterns of C. rufifacies. The results of present studies show that temperature significantly affects the growth and development of C. rufifacies. The length of developmental stages and morphological parameters varied seasonally, with longer duration and colder temperatures in winter and shorter duration and warmer temperatures in summer. The finding that faster development was directly correlated with higher temperatures highlighted the significance of temperature in affecting an insect’s life cycle. Our research highlights the necessity of gathering information on evolution trends that are specific to a given area in order to accurately calculate PMI in forensic entomological investigations. Understanding the interactions between temperature, seasonal variation, and morphological traits is critical for establishing baseline data for PMI estimates. The accuracy of PMI estimates will ultimately increase thanks to this information, and forensic entomologists will have even more opportunities to contribute to forensic investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data and the results used to support the findings of this study are presented in the manuscript.

References

  1. Keh B (1985) Scope and applications of forensic entomology. Annu Rev Entomol 30:137–154. https://doi.org/10.1146/annurev.en.30.010185.001033. PMID: 3882048

    Article  CAS  PubMed  Google Scholar 

  2. Greenberg B, Kunich JC (2002) Entomology and the law: flies as forensic indicators, 248 edn. Cambridge Univ. Press, Cambridge, pp 102–103

    Google Scholar 

  3. Sukontason KL, Sukontason K, Narongchai P, Lertthamnongtham S, Piangjai S, Olson JK (2001) Chrysomya rufifacies (Macquart) as a forensically-important fly species in 272 Thailand: a case report. J Vector Ecol J Soc Vector Ecol 26:162–164

    CAS  Google Scholar 

  4. Sukontason KL, Sukontason K, Lertthamnongtham S, Kuntalue B, Thijuk N, Vogtsberger RC et al (2003) Surface ultrastructure of Chrysomya rufifacies (Macquart) larvae 278 (Diptera: Calliphoridae). J Med Entomol 40:259–267

    Article  PubMed  Google Scholar 

  5. Sukontason K, Piangjai S, Siriwattanarungsee S, Sukontason KL (2008) Morphology and 274 developmental rate of blowflies Chrysomya megacephala and Chrysomya rufifacies in 275 Thailand: application in forensic entomology. Parasitol Res 102:1207–1216

    Article  PubMed  Google Scholar 

  6. Wells JD, Sperling FA (1999) Molecular phylogeny of Chrysomya albiceps and C. rufifacies (Diptera: Calliphoridae). J Med Entomol 36(3):222–226

    Article  CAS  PubMed  Google Scholar 

  7. Yanmanee S, Husemann M, Benbow ME, Suwannapong G (2016) Larval development rates of Chrysomya rufifacies Macquart, 1842 (Diptera: Calliphoridae) within its native range in South-East Asia. Forensic Sci Int 266:63–67

    Article  PubMed  Google Scholar 

  8. Johnson AP, Wighton SJ, Wallman JF (2014) Tracking movement and temperature selection of larvae of two forensically important blow fly species within a maggot mass. J Forensic Sci 59(6):1586–1591

    Article  PubMed  Google Scholar 

  9. Campobasso CP, Vella GD, Introna F (2001) Factors affecting decomposition and Diptera colonization. Forensic Sci Int 120:18–27

    Article  CAS  PubMed  Google Scholar 

  10. Gennard D (2012) Forensic entomology: an introduction. Wiley, Hoboken, NJ

    Google Scholar 

  11. Tarone AM, Foran DR (2006) Components of developmental plasticity in a Michigan population of Lucilia Sericata (Diptera: Calliphoridae). J Med Entomol 43(5):1023–1033

    Article  PubMed  Google Scholar 

  12. Boatright SA, Tomberlin JK (2010) Effects of temperature and tissue type on the development of Cochliomyia macellaria (Diptera: Calliphoridae). J Med Entomol 47(5):917–923

    Article  PubMed  Google Scholar 

  13. Bansode SA, More VR, Zambare SP (2017) Effect of seasonal variations on the life cycle of Lucilia Cuprina (Wiedemann, 1830)(Diptera: Calliphoridae). J Entomol Zool stud 5:1518–1522

    Google Scholar 

  14. Sarika B, Vinod R (2023) Molecular toxonomy of forensically important carrion flies using mt (DNA COI). Indian J Entomol 643–646

  15. Annasaheb Bansode S, Ramrao More V (2023) Effect of lorazepam on the development of the hairy maggot blow fly, Chrysomya rufifacies (Macquart): implication for forensic entomology. J Toxicol 2023

  16. Nandi BC (1994) Studies on calliphorid flies (Diptera: Calliphoridae) from Calcutta and adjoining areas. J Bengal Nat Hist Soc 13(2):37–47

    Google Scholar 

  17. James MT (1971) Genus Chrysomya in New Guinea. Pac Insects 13(2):361–369

    Google Scholar 

  18. Kamal RMZR, Mohamed AM, John J, Ahmad FMS, Wan OA, Baharudin O (2008) Descriptions of the larval instars of Chrysomya rufifacies (Macquart) (Diptera: Calliphoridae), a species of forensic importance in Malaysia. Jurnal Sains Kesihatan Malaysia 2:35–41

    Google Scholar 

  19. Sukontason KL, Narongchai P, Kanchai C, Vichairat K, Piangjai S, Boonsriwong W, Bunchu N, Sripakdee D, Chaiwong T, Kuntalue B, Siriwattanarungsee S, Sukontason K (2006) Morphological comparison between Chrysomya rufifacies (Macquart) and Chrysomya Villeneuvi Patton (Diptera: Calliphoridae) puparia, forensically important blow flies. Forensic Sci Int 164:230–234

    Article  PubMed  Google Scholar 

  20. Sukontason KL, Ngern-Klun R, Sripakdee D, Sukontason K (2007) Identifying fly puparia by clearing technique: application to forensic entomology. Parasitol Res 101:1407–1416

    Article  PubMed  Google Scholar 

  21. Sukontason K, Methanitikorn R, Sukontason KL, Piangjai S, Olson JK (2004) clearing technique to examine the cephalopharygeal skeletons of blow fly larvae. J Vector Ecol 29: 192–195

    PubMed  Google Scholar 

  22. Bansode SA, More VR, Zambare SP, Fahd M (2016) Effect of constant temperature (20 0 C, 25 0 C, 30 0 C, 35 0 C, 40 0 C) on the development of the Calliphorid fly of forensic importance, Chrysomya Megacephala (Fabricus, 1794). J Entomol Zool Stud 4(3):193–197

    Google Scholar 

  23. Team RC (2020) RA language and environment for statistical computing, R Foundation for Statistical. Computing

  24. Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019) Welcome to the tidyverse. J Open Source Softw 4(43):1686. https://doi.org/10.21105/joss.01686

    Article  Google Scholar 

  25. Kassambara A (2023) rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.7.2. https://rpkgs.datanovia.com/rstatix/

  26. Wickham H (2016) ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4. https://ggplot2.tidyverse.org

  27. Bansode SA, More VR, Zambare SP (2016) Effect of different constant temperatures on the life cycle of a fly of forensic importance Lucilia Cuprina. Entomol Ornithol Herpetol 5(3):2161–0983

    Google Scholar 

  28. Tomberlin JK, Mohr R, Benbow ME, Tarone AM, Vanlaerhoven S (2011) A roadmap for bridging basic and applied research in forensic entomology. Ann Rev Entomol 56(1):401–421

    Article  CAS  Google Scholar 

  29. Shah ZA, Sakhawat TA, Eela NZ (2004) The effect of flesh age, trap colour, decomposition stage, temperature and relative humidity on the visitation pattern of blow and flesh flies. Int J Agric Biology 6(2):370–374

    Google Scholar 

  30. Smith KG (1986) A manual of forensic entomology

  31. Greenberg B (1990) Nocturnal oviposition behaviour of blowflies (Diptera: Calliphoridae). J Med Entomol 27:807–810

    Article  CAS  PubMed  Google Scholar 

  32. Digby PSB (1958) Flight activity in the blowfly Calliphora Erythrocephala, in relation to wind speed, with special reference to adaptation. J Exp Biol 35:776–795

    Article  Google Scholar 

  33. Erzinçlioglu Z (2000) Maggots, murder and men: Memories and reflections of a forensic entomologist. Harley Books, Colchester

    Google Scholar 

  34. Gennard D (2007) Forensic entomology: an introduction. Wiley, Chichester

    Google Scholar 

  35. Kenneth G, Hall RD. Testing reliability of animal models in research and training programs in forensic entomology, Part 11

  36. Abd Al Galil FM, Zambare S (2015) Effect of temperature on the development of a calliphorid fly of forensic importance, Chrysomya rufifacies (Macquart, 1842). Int J 3:1099–1103

    CAS  Google Scholar 

  37. Bansode SA, More VR, Zambare SP (2016) Effect of constant temperature (20 ºC, 25 ºC, 30 ºC, 35 ºC, 40 ºC) on the development of Sarcophagidae: Diptera (FAB)(Sarcophagidae: Diptera). J Pet Environ Biotechnol 7(275):2

    Google Scholar 

  38. Anderson GS, Vanlaerhoven SL (1996) The initial studies on insect succession on carrion in South Western British Columbia. Forensic Sci 41:617–625

    Article  Google Scholar 

  39. Tantawi TI, El-Kady EM, Greenberg B, El-Ghaffar HA (1996) Arthropod succession on exposed rabbit carrion in Alexandria, Egypt. J Med Entomol 33(4):566–580

    Article  CAS  PubMed  Google Scholar 

  40. Flores M (2013) Life-history traits of Chrysomya rufifacies (Macquart)(Diptera: Calliphoridae) and its associated non-consumptive effects on Cochliomyia macellaria (Fabricius)(Diptera: Calliphoridae) behavior and development (Doctoral dissertation)

  41. Rogers EK, Franklin D, Voss SC (2021) Dietary effects on the development of Calliphora dubia and Chrysomya rufifacies (Diptera: Calliphoridae): implications for postmortem interval. J Med Entomol 58(1):79–87

    CAS  PubMed  Google Scholar 

  42. Gabre RM, Adham FK, Chi H (2005) Life table of Chrysomya megacephala (Fabricius)(Diptera: Calliphoridae). Acta Oecol 27(3):179–183

    Article  Google Scholar 

  43. Claver MA, Yaqub A (2015) Studies on the biology of the blowfly Chrysomya megacephala (Fabricius)(Diptera: Calliphoridae) under fluctuating temperatures in three different seasons. Int J Res Studies Biosci 3:107–112

    Google Scholar 

  44. Bambaradeniya YTB, Karunaratne WIP, Tomberlin JK, Goonerathne I, Kotakadeniya RB, Magni PA (2019) Effect of temperature and tissue type on the development of the forensic fly Chrysomya megacephala (Diptera: Calliphoridae). J Med Entomol 56(6):1571–1581

    Article  PubMed  Google Scholar 

  45. Ames C, Turner B (2003) Low-temperature episodes in the development of blowflies: implications for postmortem interval estimation. Med Vet Entomol 17(2):178–186

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Principal and H. O. D. Dept. of Zoology, Govt. College of Arts and Science, MH. India, for providing all the required facilities to carry out the experiments. The authors are thankful to Dr. Tyler A. Elliott, Research Associate, Adamowicz Lab, Department of Integrative Biology, University of Guelph, Canada, for helping with data analysis and proofreading.

Funding

There is no funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally.

Corresponding author

Correspondence to Sarika Bansode.

Ethics declarations

Conflict of interest

The authors declare that they don’t have any conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Chrysomya rufifacies is pivotal for precise postmortem interval (PMI) determination in forensic entomology.

• Temperature significantly influences growth rates of Chrysomya rufifacies, with higher temperatures leading to faster development.

• Seasonal variations impact developmental phases, highlighting the need for region-specific data in PMI calculations.

• Understanding temperature and morphological features is crucial for establishing accurate baseline PMI estimates.

• This research enhances PMI accuracy, empowering forensic entomologists in criminal investigations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansode, S., More, V. Effects of temperature variation on the life cycle of the forensically important Calliphoridae fly Chrysomya rufifacies (Macquart 1843) (Diptera). Int J Trop Insect Sci 44, 747–757 (2024). https://doi.org/10.1007/s42690-024-01189-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-024-01189-6

Keywords

Navigation