Skip to main content
Log in

A comprehensive assessment of selective amino acid 15N-labeling in human embryonic kidney 293 cells for NMR spectroscopy

  • Brief Report
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A large proportion of human proteins contain post-translational modifications that cannot be synthesized by prokaryotes. Thus, mammalian expression systems are often employed to characterize structure/function relationships using NMR spectroscopy. Here we define the selective isotope labeling of secreted, post-translationally modified proteins using human embryonic kidney (HEK)293 cells. We determined that alpha-[15N]- atoms from 10 amino acids experience minimal metabolic scrambling (C, F, H, K, M, N, R, T, W, Y). Two more interconvert to each other (G, S). Six others experience significant scrambling (A, D, E, I, L, V). We also demonstrate that tuning culture conditions suppressed V and I scrambling. These results define expectations for 15N-labeling in HEK293 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barb AW et al (2012) NMR characterization of immunoglobulin G fc glycan motion on enzymatic sialylation. Biochemistry 51:4618–4626

    Article  CAS  PubMed  Google Scholar 

  • Barb AW, Falconer DJ, Subedi GP (2019) The preparation and solution NMR spectroscopy of human glycoproteins is accessible and rewarding. Methods Enzymol 614:239–261

    Article  CAS  PubMed  Google Scholar 

  • Barbieri L, Luchinat E, Banci L (2016) Characterization of proteins by in-cell NMR spectroscopy in cultured mammalian cells. Nat Protoc 11:1101–1111

    Article  CAS  PubMed  Google Scholar 

  • Callaway E (2020) Revolutionary cryo-EM is taking over structural biology. Nature 578:201

    Article  CAS  PubMed  ADS  Google Scholar 

  • Chalmers GR et al (2019) NMR resonance assignment methodology: characterizing large sparsely labeled glycoproteins. J Mol Biol 431:2369–2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delaglio F et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  CAS  PubMed  Google Scholar 

  • Dutta A, Saxena K, Schwalbe H, Klein-Seetharaman J (2012) Isotope labeling in mammalian cells. Methods Mol Biol 831:55–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ereno-Orbea J et al (2017) Molecular basis of human CD22 function and therapeutic targeting. Nat Commun 8:764

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Feng L, Lee HS, Prestegard JH (2007) NMR resonance assignments for sparsely 15 N labeled proteins. J Biomol NMR 38:213–219

    Article  CAS  PubMed  Google Scholar 

  • Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol Biol 278:313–352

    CAS  PubMed  Google Scholar 

  • Jumper J et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Luchinat E, Barbieri L, Banci L (2017) A molecular chaperone activity of CCS restores the maturation of SOD1 fALS mutants. Sci Rep 7:17433

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Matthews DE (2020) Review of lysine metabolism with a focus on humans. J Nutr 150:2548S–2555S

    Article  PubMed  Google Scholar 

  • Moremen KW, Tiemeyer M, Nairn AV (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13:448–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nkari WK, Prestegard JH (2009) NMR resonance assignments of sparsely labeled proteins: amide proton exchange correlations in native and denatured states. J Am Chem Soc 131:5344–5349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ollerenshaw JE, Tugarinov V, Kay LE (2003) Methyl TROSY: explanation and experimental verification. Mag Res Chem 41:843–852

    Article  CAS  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wuthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A 94:12366–12371

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Riek R, Wider G, Pervushin K, Wuthrich K (1999) Polarization transfer by cross-correlated relaxation in solution NMR with very large molecules. Proc Natl Acad Sci U S A 96:4918–4923

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Sastry M, Bewley CA, Kwong PD (2015) Effective isotope labeling of proteins in a mammalian expression system. Methods Enzymol 565:289–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subedi GP, Barb AW (2015) The structural role of antibody N-glycosylation in receptor interactions. Structure 23:1573–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subedi GP, Johnson RW, Moniz HA, Moremen KW, Barb A (2015) High yield expression of recombinant human proteins with the transient transfection of HEK293 cells in suspension. J Vis Exp. https://doi.org/10.3791/53568

    Article  PubMed  PubMed Central  Google Scholar 

  • Takeuchi H, Haltiwanger RS (2014) Significance of glycosylation in notch signaling. Biochem Biophys Res Commun 453:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venters RA, Farmer BT 2nd, Fierke CA, Spicer LD (1996) Characterizing the use of perdeuteration in NMR studies of large proteins: 13 C, 15 N and 1H assignments of human carbonic anhydrase II. J Mol Biol 264:1101–1116

    Article  CAS  PubMed  Google Scholar 

  • Williams RV et al (2022) AssignSLP_GUI, a software tool exploiting AI for NMR resonance assignment of sparsely labeled proteins. J Magn Reson 345:107336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu FJ, Kronenberg D, Hertel I, Grzesiek S (2023) The key role of glutamine for protein expression and isotopic labeling in insect cells. J Biol Chem 299:105142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wüthrich K (2001) The way to NMR structures of proteins. Nat Struct Biol 8:923–925

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y et al (2006) Glycoform-dependent conformational alteration of the fc region of human immunoglobulin G1 as revealed by NMR spectroscopy. Biochim Biophys Acta 1760:693–700

    Article  CAS  PubMed  Google Scholar 

  • Yanaka S, Yagi H, Yogo R, Onitsuka M, Kato K (2022) Glutamine-free mammalian expression of recombinant glycoproteins with uniform isotope labeling: an application for NMR analysis of pharmaceutically relevant fc glycoforms of human immunoglobulin G1. J Biomol NMR 76:17–22

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kelley Moremen (UGA) for suggesting this inquiry area and for use of the instrument to measure osmolality.

Funding

This work was supported by National Institutes of Health Award NIAID U01 AI148114 to AWB, NIH S10 OD025118 to IJA, and by funds from the Biochemistry and Molecular Biology Department at the University of Georgia and the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

GPS, ARD, PGK and ETR performed experiments. GPS, AWB, ETR and IJA designed experiments. IJA and AWB acquired funding. ARD and AWB wrote the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Adam W. Barb.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subedi, G.P., Roberts, E.T., Davis, A.R. et al. A comprehensive assessment of selective amino acid 15N-labeling in human embryonic kidney 293 cells for NMR spectroscopy. J Biomol NMR (2024). https://doi.org/10.1007/s10858-023-00434-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10858-023-00434-3

Keywords

Navigation