Skip to main content
Log in

Optimum beam waist radius under applied magnetic field for optimal radiation properties of nonlinear Thomson scattering

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The effect of beam waist radius on the radiation properties of electrons in the presence or absence of an applied magnetic field is comparatively investigated when Gaussian circularly polarized laser pulse drives electrons for relativistic nonlinear Thomson forward scattering. This effect will be investigated in terms of the electrodynamic properties of high-energy electrons, the full-angular distribution of radiated power and the spectral properties. We study the coupling effect of the crossover parameter, the applied magnetic field and the beam waist radius. Based on theoretical analyses and numerical calculations, we find that the various radiation properties at different beam waist radii are consistent. And there always exists an optimal beam waist radius, which makes the stimulated radiation of high-energy electrons high-power, highly-collimated, well-directed, wide-frequency-domain, and super-continuous, when Gaussian laser drives the electron oscillating. Moreover, we found that the radiation properties are significantly improved in all directions when an applied magnetic field is introduced. Accordingly, we select the optimal beam radius on the basis of the applied magnetic field. After numerical simulations, we developed a modulation method for \(X\)-rays with optimal radiation properties. The above study is a pioneering guide for modulation of \(X\)-rays in optical laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T.H. Maiman, Nature 187, 493–494 (1960)

    Article  ADS  Google Scholar 

  2. J.L. Wentz, Proc IEEE Inst Electr Electron Eng 52, 6 (1964)

    Google Scholar 

  3. M.A. Kovacs, G.W. Flynn, A. Javan, Appl. Phys. Lett. 8, 3 (1966)

    Article  Google Scholar 

  4. P.W. Smith, Proc IEEE Inst Electr Electron Eng 58, 9 (1970)

    Google Scholar 

  5. H.A. Haus, IEEE J Sel Top Quant 6, 6 (2000)

    Google Scholar 

  6. P. Maine, D. Strickland, P. Bado et al., IEEE J Quant Electron 24, 2 (1988)

    Article  Google Scholar 

  7. A. Galvanauskas, IEEE J Sel Top Quant 7, 4 (2001)

    Article  Google Scholar 

  8. S. Witte, K.S. Eikema, IEEE J Sel Top Quant 18, 1 (2011)

    Google Scholar 

  9. X. Yang, Z. Xu, Y. Leng et al., Opt. Lett. 27, 13 (2002)

    Article  Google Scholar 

  10. U. Keller, Nature 424, 6950 (2003)

    Article  Google Scholar 

  11. S. Backus, C.G. Durfee III., M.M. Murnane et al., Rev. Sci. Instrum. 69, 3 (1998)

    Article  Google Scholar 

  12. D.M. Perry, G. Mourou, Science 264, 5161 (1994)

    Article  Google Scholar 

  13. S. Corde, K.T. Phuoc, G. Lambert et al., Rev. Mod. Phys. 85, 1 (2013)

    Article  ADS  Google Scholar 

  14. D.J. Corvan, M. Zepf, G.A. Sarri, Nucl Instrum Meth A 829, 291–300 (2016)

    Article  ADS  Google Scholar 

  15. V.S. Letokhov, Nature 316, 6026 (1985)

    Article  Google Scholar 

  16. M.L. Wolbarsht, Laser applications in medicine and biology (Springer, New York, Plenum Press, 1971)

    Book  Google Scholar 

  17. J.L. Boulnois, Lasers Med. Sci. 1, 47–66 (1986)

    Article  Google Scholar 

  18. M. Protopapas, C.H. Keitel, P.L. Knight, Rep. Prog. Phys. 60, 4 (1997)

    Article  Google Scholar 

  19. H. Takabe, Prog. Theor. Phys. Suppl. 143, 202–265 (2001)

    Article  ADS  Google Scholar 

  20. Z. Chen, Q. Chen, H. Qin et al., Chinese J Light Scatter 34, 2 (2022)

    Google Scholar 

  21. X. Zhang, D. Chen, Y. Tian, Appl Phys B-Lasers O 129, 135 (2023)

    Article  ADS  Google Scholar 

  22. P. Yu, H. Lin, Z. Gu et al., Laser Phys. 30, 4 (2020)

    Google Scholar 

  23. K.P. Singh, Phys. Rev. E 69, 5 (2004)

    Google Scholar 

  24. D.N. Gupta, N. Kant, K.P. Singh, Laser Phys. 29, 1 (2018)

    Google Scholar 

  25. A.D. Debus, M. Bussmann, M. Siebold et al., Appl Phys B-Lasers O 100, 61–76 (2010)

    Article  ADS  Google Scholar 

  26. K. Steiniger, D. Albach, M. Bussmann et al., Front. Phys. 1, 155 (2019)

    Article  Google Scholar 

  27. A.P. Potylitsyn, D.V. Gavrilenko, M.N. Strikhanov et al., Phys. Rev. Accel. Beams 26, 4 (2023)

    Article  Google Scholar 

  28. X. Hong, D. Wei, Y. Li et al., EPL 139, 1 (2022)

    Article  Google Scholar 

  29. F. He, W. Yu, P. Lu et al., Phys. Rev. E 68, 4 (2003)

    Google Scholar 

  30. Y. Wang, Q. Zhou, J. Zhuang et al., Opt. Express 29, 14 (2021)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Sciences Foundation of China under Grant No. 10947170/A05 and No. 11104291, Natural science fund for colleges and universities in Jiangsu Province under Grant No. 10KJB140006, Natural Sciences Foundation of Shanghai under Grant No. 11ZR1441300 and Natural Science Foundation of Nanjing University of Posts and Telecommunications under Grant No. 202310293146Y and sponsored by Jiangsu Qing Lan Project.

Funding

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Author information

Authors and Affiliations

Authors

Contributions

YZ Analyzed the result, wrote the main manuscript text and prepared figures 7-10 and 13-14. HW Ran program, analyzed the data and prepared figures 2-3 and 11-12. FG Derived the formula, wrote the manuscript and prepared figures 4-6 YW Wrote code, improved article visibility and technicality, and prepared figure 1. XL Verified the result, improved the programs, wrote and reviewed the manuscript. QY Investigated the relevant field, improved the method and reviewed the manuscript. YT Managed the project, provided funds and resources, supervised and reviewd the manuscript.

Corresponding authors

Correspondence to Yi Zhang or Youwei Tian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, H., Gu, F. et al. Optimum beam waist radius under applied magnetic field for optimal radiation properties of nonlinear Thomson scattering. Appl. Phys. B 130, 43 (2024). https://doi.org/10.1007/s00340-024-08178-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-024-08178-0

Navigation