Skip to main content
Log in

Maximal Mass Neutron Star as a Key to Superdense Matter Physics

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We propose a universal approximation of the equation of state of superdense matter in neutron star (NS) interiors. It contains only two parameters, the pressure and the density at the center of the maximally massive neutron star. We demonstrate the validity of this approximation for a wide range of different types of equations of state, including both baryonic and hybrid models. Combined with recently discovered correlations of internal (density, pressure, and speed of sound at the center) and external (mass, radius) properties of a maximally massive neutron star, this approximation turns out to be an effective tool for determining the equation of state of superdense matter using astrophysical observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. https://compose.obspm.fr.

  2. \(\gamma_{\text{max}}^{\text{(fit)}}\) may differ significantly from the actual value of the adiabatic index at the point \(\rho=\rho_{\text{TOV}}\). Although the fitting error (1c) for \(c_{\text{s}_{\text{TOV}}}\) is generally not too large, the error of \(c_{\text{s}_{\text{TOV}}}^{2}\) in a few worst cases exceeds \(50\%\).

  3. Stronger limits can be obtained from other observations.

REFERENCES

  1. B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, et al., Astrophys. J. 848, L12 (2017).

    Article  ADS  Google Scholar 

  2. E. Annala, T. Gorda, A. Kurkela, and A. Vuorinen, Phys. Rev. Lett. 120, 172703 (2018).

  3. J. Antoniadis, P. C. C. Freire, N. Wex, Th. M. Tauris, R. S. Lynch, M. H. van Kerkwijk, M. Kramer, C. Bassa, et al., Science (Washington, DC, U. S.) 340, 448 (2013).

    Article  ADS  CAS  Google Scholar 

  4. M. Bejger and P. Haensel, Astron. Astrophys. 396, 917 (2002).

    Article  ADS  Google Scholar 

  5. B.-J. Cai, B.-A. Li, and Z. Zhang, Astrophys. J. 952, 147 (2023).

    Article  ADS  Google Scholar 

  6. N. Degenaar and V. F. Suleimanov, in The Physics and Astrophysics of Neutron Stars, Ed. by L. Rezzolla, P. Pizochero, D. I. Jones, N. Rea, and I. Vidaña (Springer, Cham, 2018), p. 185.

    Google Scholar 

  7. P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts, and J. W. T. Hessels, Nature (London, U.K.) 467, 1081 (2010).

    Article  ADS  CAS  Google Scholar 

  8. E. Fonseca, H. T. Cromartie, T. T. Pennucci, P. S. Ray, A. Yu. Kirichenko, S. M. Ransom, P. B. Demorest, I. H. Stairs, et al., Astrophys. J. 915, L12 (2021).

    Article  ADS  CAS  Google Scholar 

  9. M. E. Gusakov, P. Haensel, and E. M. Kantor, Mon. Not. R. Astron. Soc. 439, 318 (2014).

    Article  ADS  CAS  Google Scholar 

  10. M. E. Gusakov, A. D. Kaminker, D. G. Yakovlev, and O. Y. Gnedin, Mon. Not. R. Astron. Soc. 363, 555 (2005).

    Article  ADS  Google Scholar 

  11. P. Haensel, A. Y. Potekhin, and D. G. Yakovlev, Neutron Stars 1: Equation of State ad Structure (Springer, New York, 2007).

    Book  Google Scholar 

  12. N. Jiang and K. Yagi, Phys. Rev. D 101, 124006 (2020).

  13. J.-L. Jiang, C. Ecker, and L. Rezzolla, Astrophys. J. 949, 11 (2023).

    Article  ADS  Google Scholar 

  14. A. D. Kaminker, A. A. Kaurov, A. Y. Potekhin, and D. G. Yakovlev, Mon. Not. R. Astron. Soc. 442, 3484 (2014).

    Article  ADS  CAS  Google Scholar 

  15. D. Kandel and R. W. Romani, Astrophys. J. 942, 6 (2023).

    Article  ADS  Google Scholar 

  16. J. M. Lattimer and M. Prakash, Astrophys. J. 550, 426 (2001).

    Article  ADS  Google Scholar 

  17. J. M. Lattimer and M. Prakash, Phys. Rep. 621, 127 (2016).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. J. Lattimer, Ann. Rev. Astron. Astrophys. 71, 433 (2021).

    CAS  Google Scholar 

  19. L. Lindblom, Astrophys. J. 398, 569 (1992).

    Article  ADS  CAS  Google Scholar 

  20. L. Lindblom, Phys. Rev. D 82, 103011 (2010).

  21. D. D. Ofengeim, M. E. Gusakov, P. Haensel, and M. Fortin, Phys. Rev. D 100, 103017 (2019).

  22. D. D. Ofengeim, Phys. Rev. D 101, 103029 (2020).

  23. J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374 (1939).

    Article  ADS  CAS  Google Scholar 

  24. F. Özel and P. Freire, Ann. Rev. Astron. Astrophys. 54, 401 (2016).

    Article  ADS  Google Scholar 

  25. J. M. Pearson, N. Chamel, A. Y. Potekhin, A. F. Fantina, C. Ducoin, A. K. Dutta, and S. Goriely, Mon. Not. R. Astron. Soc. 481, 2994 (2018).

    ADS  CAS  Google Scholar 

  26. A. Y. Potekhin, A. F. Fantina, N. Chamel, J. M. Pearson, and S. Goriely, Astron. Astrophys. 560, A48 (2013).

    Article  ADS  Google Scholar 

  27. G. Raaijmakers, S. K. Greif, K. Hebeler, T. Hinderer, S. Nissanke, A. Schwenk, T. E. Riley, A. L. Watts, J. M. Lattimer, and W. C. G. Ho, Astrophys. J. 918, L29 (2021).

    Article  ADS  CAS  Google Scholar 

  28. J. S. Read, B. D. Lackey, B. J. Owen, and J. L. Friedman, Phys. Rev. D 79, 124032 (2009).

  29. L. Rezzolla, E. R. Most, and L. R. Weih, Astrophys. J. 852, L25 (2018).

    Article  ADS  Google Scholar 

  30. S. Shapiro and S. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983).

    Book  Google Scholar 

  31. R. C. Tolman, Phys. Rev. 55, 364 (1939).

    Article  ADS  Google Scholar 

  32. S. Typel, M. Oertel, and T. Klähn, Phys. Part. Nucl. 46, 633 (2015).

    Article  Google Scholar 

  33. K. Yagi and N. Yunes, Science (Washington, DC, U. S.) 341, 365 (2013a).

    Article  ADS  CAS  Google Scholar 

  34. K. Yagi and N. Yunes, Phys. Rev. D 88, 023009 (2013b).

  35. D. G. Yakovlev, W. C. G. Ho, P. S. Shternin, C. O. Heinke, and A. Y. Potekhin, Mon. Not. R. Astron. Soc. 411, 1977 (2011).

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by RSF grant no. 19-12-00133 (PS) and by an Advanced ERC grant MultiJets (DO, TP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Ofengeim.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by the Authors

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ofengeim, D.D., Shternin, P.S. & Piran, T. Maximal Mass Neutron Star as a Key to Superdense Matter Physics. Astron. Lett. 49, 567–574 (2023). https://doi.org/10.1134/S1063773723100055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773723100055

Keywords:

Navigation