Skip to main content
Log in

Evolutionary Status of Long-Period Radio Pulsars

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We consider the evolutionary status of the recently discovered long-period radio sources PSR J0901-4046, GLEAM-X J1627-52, and GPM J1839-10. It is hypothesized that all three sources are radio pulsars. Within the framework of standard scenarios, it is thought that for the pulsar mechanism to operate, it is necessary to exclude the penetration of external matter into the light cylinder, which corresponds to the ejector stage. We show that for realistic properties of the interstellar medium the 76-second pulsar J0901-4046 must be at this stage, whereas the sources GLEAM-X J1627-52 and GPM J1839-10 with periods \({\gtrsim}1000\) s can be at this stage only in the case of unrealistically high dipolar magnetic fields \({\gtrsim}10^{16}\) G. We also show that sources with periods \({\sim}100\) s and magnetic fields \({\lesssim}10^{13}\) G cannot be ejectors in a realistic interstellar medium. Thus, we predict that long-period radio pulsars with standard magnetic fields will not be discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Notes

  1. We will present our detailed modeling of the evolution of isolated NSs with long initial periods and their properties at the accretion stage in a separate publication.

REFERENCES

  1. V. S. Beskin, Phys. Usp. 42, 1071 (1999).

    Article  ADS  Google Scholar 

  2. V. S. Beskin and S. A. Eliseeva, Astron. Lett. 31, 263 (2005).

    Article  ADS  Google Scholar 

  3. P. A. Boldin and S. B. Popov, Mon. Not. R. Astron. Soc. 407, 1090 (2010).

    Article  ADS  Google Scholar 

  4. M. Caleb, I. Heywood, K. Rajwade, M. Malenta, B. W. Stappers, E. Barr, W. Chen, V. Morello, et al., Nat. Astron. 6, 828 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. A. D’Ai, P. A. Evans, D. N. Burrows, N. P. M. Kuin, D. A. Kann, S. Campana, A. Maselli, P. Romano, et al., Mon. Not. R. Astron. Soc. 463, 2394 (2016).

    Article  ADS  CAS  Google Scholar 

  6. R. E. Davies and J. E. Pringle, Mon. Not. R. Astron. Soc. 196, 209 (1981).

    Article  ADS  Google Scholar 

  7. A. De Luca, R. P. Mignani, S. Zaggia, G. Beccari, S. Mereghetti, P. A. Caraveo, and G. F. Bignami, Astrophys. J. 682, 1185 (2008).

    Article  ADS  CAS  Google Scholar 

  8. T. Güver and F. Özel, Mon. Not. R. Astron. Soc. 400, 2050 (2009).

    Article  ADS  Google Scholar 

  9. N. Hurley-Walker, X. Zhang, A. Bahramian, S. J. McSweeney, T. N. O’Doherty, P. J. Hancock, J. S. Morgan, G. E. Anderson, G. H. Heald, and T. J. Galvin, Nature (London, U.K.) 601, 526 (2022).

    Article  ADS  CAS  Google Scholar 

  10. N. Hurley-Walker, N. Rea, S. J. McSweeney, B. W. Meyers, E. Lenc, I. Heywood, S. D. Hyman, Y. P. Men, et al., Nature (London, U.K.) 619, 487 (2023).

    Article  ADS  CAS  Google Scholar 

  11. S. D. Hyman, T. J. W. Lazio, N. E. Kassim, P. S. Ray, C. B. Markwardt, and F. Yusef-Zadeh, Nature (London, U.K.) 434, 50 (2005).

    Article  ADS  CAS  Google Scholar 

  12. R. S. Klessen and S. C. O. Glover, Star Formation in Galaxy Evolution: Connecting Numerical Models to Reality, Vol. 43 of Saas-Fee Advanced Course (Springer, Berlin, 2016), p. 85.

  13. V. M. Lipunov, Astrophysics of Neutron Stars (Nauka, Moscow, 1987; Springer, Heidelberg, 1992).

  14. E. Novoselov, V. Beskin, A. Galishnikova, M. N. Rashkovetskyi, and A. V. Biryukov, Mon. Not. R. Astron. Soc. 494, 3899 (2020)

    Article  ADS  Google Scholar 

  15. A. Philippov, A. Tchekhovskoy, and J. G. Li, Mon. Not. R. Astron. Soc. 441, 1879 (2014).

    Article  ADS  Google Scholar 

  16. S. B. Popov, arXiv: 0812.4587 (2008).

  17. G. Raaijmakers, S. Greif, K. Hebeler, T. Hinderer, S. Nissanke, A. Schwenk, T. E. Riley, A. L. Watts, J. M. Lattimer, and W. C. G. Ho, Astrophys. J. 918, L29 (2021)

    Article  ADS  CAS  Google Scholar 

  18. N. Rea, A. Borhgese, P. Esposito, F. Coti Zelati, M. Bachetti, G. L. Israel, and A. De Luca, Astrophys. J. 828, L13 (2016).

    Article  ADS  Google Scholar 

  19. N. Rea, N. Hurley-Walker, C. Pardo-Araujo, M. Ronchi, V. Graber, F. Coti Zelati, D. De Martino, A. Bahramian, et al., arxiv: 2307.10351 (2023).

  20. M. Ronchi, N. Rea, V. Graber, and N. Hurley-Walker, Astrophys. J. 934, 184 (2022).

    Article  ADS  Google Scholar 

  21. V. F. Shvartsman, Sov. Astron. 14, 527 (1970).

    ADS  Google Scholar 

  22. L. Tuohy and G. Garmire, Astrophys. J. 239, 107 (1980).

    Article  ADS  Google Scholar 

  23. J. L. Vergely, R. Lallement, and N. L. J. Cox, Astron. Astrophys. 664, A174 (2022).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

A.V. Biryukov thanks D.Z. Wiebe for the consultations on the distribution of the interstellar medium in the Galaxy.

Funding

This work was supported by RSF grant no. 21-12-00141.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. D. Afonina or S. B. Popov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Astakhov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afonina, M.D., Biryukov, A.V. & Popov, S.B. Evolutionary Status of Long-Period Radio Pulsars. Astron. Lett. 49, 553–559 (2023). https://doi.org/10.1134/S1063773723090013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773723090013

Keywords:

Navigation