Skip to main content
Log in

On the Influence of Magnetic Turbulence on the Spectra of Gamma-Ray Burst Afterglows

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Gamma-ray bursts (GRBs) are the phenomena of rapid energy release of enormous power associated with the collapse or merging of stars. As a result of internal processes, populations of nonthermal accelerated particles radiating in a wide energy range are formed in them. A number of observations have shown that photons with energies up to tens of TeV are detected from some GRBs. However, due to the great energy losses of radiating particles, the explanation of this high-energy radiation in terms of standard radiation mechanisms runs into great difficulties. In this paper, based on the model of adiabatic expansion for the GRB afterglow phase, we investigate the influence of magnetic inhomogeneities on the spectra within the electron and proton synchrotron radiation mechanism by taking into account the Compton scattering of synchrotron photons. We show that the magnetic inhomogeneity effect can increase the maximum energies of the synchrotron radiation from electrons and protons several fold without affecting the maximum energies of the Compton photons being produced in the Klein–Nishina regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

REFERENCES

  1. M. Ackermann, K. Asano, W. B. Atwood, M. Axelsson, L. Baldini, J. Ballet, G. Barbiellini, M. G. Baring, et al., Astrophys. J. 716, 1178 (2010).

    Article  ADS  CAS  Google Scholar 

  2. F. Aharonian, F. Ait Benkhali, J. Aschersleben, H. Ashkar, M. Backes, A. Baktash, V. Barbosa Martins, R. Batzofin, et al., Astrophys. J. 946, L27 (2023).

    Article  ADS  Google Scholar 

  3. R. L. Aptekar, A. M. Bykov, S. V. Golenetskii, D. D. Frederiks, D. S. Svinkin, M. V. Ulanov, A. E. Tsvetkova, A. V. Kozlova, et al., Phys. Usp. 62, 739 (2019).

    Article  ADS  CAS  Google Scholar 

  4. D. Bégué, F. Samuelsson, and A. Pe’er, Astrophys. J. 937, 101 (2022).

    Article  ADS  Google Scholar 

  5. R. D. Blandford and C. F. McKee, Phys. Fluids 19, 1130 (1976).

    Article  ADS  Google Scholar 

  6. G. R. Blumenthal and R. J. Gould, Rev. Mod. Phys. 42, 237 (1970).

    Article  ADS  CAS  Google Scholar 

  7. A. M. Bykov, G. G. Pavlov, A. V. Artemyev, and Yu. A. Uvarov, Mon. Not. R. Astron. Soc. 421, L67 (2012a).

    Article  ADS  Google Scholar 

  8. A. M. Bykov, N. Gehrels, H. Krawczynski, M. Lemoine, G. Pelletier, and M. Pohl, Space Sci. Rev. 173, 309 (2012b).

    Article  ADS  CAS  Google Scholar 

  9. E. Costa, F. Frontera, J. Heise, M. Feroci, J. in’t Zand, F. Fiore, M. N. Cinti, D. Dal Fiume, et al., Nature (London, U.K.) 387, 783 (1997).

    Article  ADS  CAS  Google Scholar 

  10. E. V. Derishev, Radiophys. Quantum Electron. 63, 862 (2021).

    Article  ADS  Google Scholar 

  11. I. Florou, M. Petropoulou, and A. Mastichiadis, Mon. Not. R. Astron. Soc. 505, 1367 (2021).

    Article  ADS  CAS  Google Scholar 

  12. D. A. Frail, S. R. Kulkarni, L. Nicastro, M. Feroci, and G. B. Taylor, Nature (London, U.K.) 389, 261 (1997).

    Article  ADS  CAS  Google Scholar 

  13. G. Ghisellini, G. Ghirlanda, G. Oganesyan, S. Ascenzi, L. Nava, A. Celotti, O. S. Salafia, M. E. Ravasio, et al., Astron. Astrophys. 636, A82 (2020).

    Article  ADS  CAS  Google Scholar 

  14. V. L. Ginzburg and S. I. Syrovatskii, Ann. Rev. Astron. Astrophys. 3, 297 (1965).

    Article  ADS  Google Scholar 

  15. J. Granot, T. Piran, and R. Sari, Astrophys. J. 513, 679 (1999a).

    Article  ADS  Google Scholar 

  16. J. Granot, T. Piran, and R. Sari, Astrophys. J. 527, 236 (1999b).

    Article  ADS  Google Scholar 

  17. P. W. Guilbert, A. C. Fabian, and M. J. Rees, Mon. Not. R. Astron. Soc. 205, 593 (1983).

    Article  ADS  CAS  Google Scholar 

  18. H. Isravel, A. Pe’er, and D. Bégué, Astrophys. J. 955, 70 (2023).

    Article  ADS  Google Scholar 

  19. R. W. Klebesadel, I. B. Strong, and R. A. Olson, Astrophys. J. 182, L85 (1973).

    Article  ADS  Google Scholar 

  20. S. R. Kulkarni, S. G. Djorgovski, A. N. Ramaprakash, R. Goodrich, J. S. Bloom, K. L. Adelberger, T. Kundic, L. Lubin, et al., Nature (London, U.K.) 393, 35 (1998).

    Article  ADS  CAS  Google Scholar 

  21. E. P. Mazets, S. V. Golenetskii, V. N. Il’inskii, Yu. A. Gur’yan, and T. V. Kharitonova, JETP Lett. 20, 32 (1974).

    ADS  Google Scholar 

  22. C. A. Meegan, G. J. Fishman, R. B. Wilson, W. S. Paciesas, G. N. Pendleton, J. M. Horack, M. N. Brock, and C. Kouveliotou, Nature (London, U.K.) 355, 143 (1992).

    Article  ADS  Google Scholar 

  23. M. R. Metzger, S. G. Djorgovski, S. R. Kulkarni, C. C. Steidel, K. L. Adelberger, D. A. Frail, E. Costa, and F. Frontera, Nature (London, U.K.) 387, 878 (1997).

    Article  ADS  CAS  Google Scholar 

  24. D. Miceli and L. Nava, Galaxies 10, 66 (2022).

    Article  ADS  Google Scholar 

  25. K. Noda and R. D. Parsons, Galaxies 10, 7 (2022).

    Article  ADS  Google Scholar 

  26. G. Oganesyan, L. Nava, G. Ghirlanda, and A. Celotti, Astrophys. J. 846, 137 (2017).

    Article  ADS  Google Scholar 

  27. J. van Paradijs, P. J. Groot, T. Galama, C. Kouveliotou, R. G. Strom, J. Telting, R. G. M. Rutten, G. J. Fishman, et al., Nature (London, U.K.) 386, 686 (1997).

    Article  ADS  CAS  Google Scholar 

  28. R. Sari, Astrophys. J. 489, L37 (1997).

    Article  ADS  Google Scholar 

  29. R. Sari and A. A. Esin, Astrophys. J. 548, 787 (2001).

    Article  ADS  Google Scholar 

  30. B. T. Zhang, K. Murase, K. Ioka, D. Song, C. Yuan, and P. Mészáros, Astrophys. J. 947, L14 (2023).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the referee for the useful remarks.

Funding

The work of Yu.A. Uvarov on the modeling and computations of spectra was supported by RSF grant no. 21-12-00250. The work of A.M. Bykov on the analysis of radiation mechanisms was supported by theme no. 0040-2019-0025 of the Ioffe Physical–Technical Institute. Some of the computations were performed on supercomputers of the Joint Supercomputer Center of the Russian Academy of Sciences and the Tornado system of the Supercomputer Center of the St. Petersburg Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Uvarov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Astakhov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uvarov, Y.A., Bykov, A.M. On the Influence of Magnetic Turbulence on the Spectra of Gamma-Ray Burst Afterglows. Astron. Lett. 49, 591–597 (2023). https://doi.org/10.1134/S1063773723100079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773723100079

Keywords:

Navigation