Skip to main content
Log in

Impact of Venomous Agent X (VX) Adsorption on the Structural and Electronic Properties of BN Nanosheet, Nanotube and nanocage-A DFT-D3 Study

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The removal and detection of harmful gases from contaminated air has received a great deal of attention in the scientific community. In this study the interaction of toxic nerve agent Venomous Agent X (VX) with boron nitride (BN) nanosheet, nanotube and nanocage is investigated using density functional theory (DFT). The findings revealed that the target gas tends to adsorb on to the boron atom through P = O bond for the considered nanostructures. The results suggested that the electronic properties of the boron nitride nanotube (BNNT) are well altered leading to reduced energy gap and thereby resulting in increased conductivity. Among the considered nanostructures the highest adsorption energy is identified for B12N12 nanocage, recording a value of -30.85 kcal/mol which in turn makes desorption an almost impossible process. Similarly, the BN nanosheet is also seen with higher recovery time and less sensitive due to its wide energy gap and henceforth not be an effective sensor. On the other hand, the study also confirms that with a small recovery time of 2.59s in average and hence could be a potentially effective sensor for the detection of the toxic gas. Our findings could deliver a basic interpretation on the behavior of these BN based nanomaterials towards adsorption of VX nerve agent. Thereby, supporting the research community towards new perspectives on the development of gas sensors in nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data is available on request.

References

  1. X. Shan, M.R. Sambrook, D.C. Clary, A Theoretical Study of Gas-Phase Unimolecular Decomposition of Simulants of the Nerve Agent VX, The Journal of Physical Chemistry. (n.d.).

  2. K. Ganesan, S. Raza, R. Vijayaraghavan, Chemical warfare agents, J Pharm Bioall Sci. 2 (2010) 166. https://doi.org/10.4103/0975-7406.68498.

    Article  CAS  Google Scholar 

  3. J. Bajgar, J. Fusek, J. Kassa, K. Kuca, D. Jun, Chemical Aspects of Pharmacological Prophylaxis Against Nerve Agent Poisoning, CMC. 16 (2009) 2977–2986. https://doi.org/10.2174/092986709788803088.

    Article  CAS  Google Scholar 

  4. S. Chauhan, S. Chauhan, R. D’Cruz, S. Faruqi, K.K. Singh, S. Varma, M. Singh, V. Karthik, Chemical warfare agents, Environmental Toxicology and Pharmacology. 26 (2008) 113–122. https://doi.org/10.1016/j.etap.2008.03.003.

    Article  CAS  PubMed  Google Scholar 

  5. J. Newmark, Nerve Agents, The Neurologist. 13 (2007) 20–32. https://doi.org/10.1097/01.nrl.0000252923.04894.53.

  6. B. Friedrich, D. Hoffmann, J. Renn, F. Schmaltz, M. Wolf, eds., One Hundred Years of Chemical Warfare: Research, Deployment, Consequences, Springer International Publishing, Cham, 2017. https://doi.org/10.1007/978-3-319-51664-6.

    Book  Google Scholar 

  7. D.G. Upshall, S. M. Somani (ed.) Chemical Warfare Agents Academic Press, London, 1992; 443 pp., $85.00, J. Appl. Toxicol. 13 (1993) 77–77. https://doi.org/10.1002/jat.2550130115.

  8. J. Bajgar, Organophosphates⧸Nerve Agent Poisoning: Mechanism of Action, Diagnosis, Prophylaxis, And Treatment, in: Advances in Clinical Chemistry, Elsevier, 2004: pp. 151–216. https://doi.org/10.1016/S0065-2423(04)38006-6.

  9. G.N. Volans, L. Karalliedde, Long-term effects of chemical weapons, The Lancet. 360 (2002) s35–s36. https://doi.org/10.1016/S0140-6736(02)11813-7.

    Article  Google Scholar 

  10. A. Niven, S. Roop, Inhalational exposure to nerve agents, Respiratory Care Clinics. 10 (2004) 59–74. https://doi.org/10.1016/S1078-5337(03)00049-2.

    Article  Google Scholar 

  11. Y. Yong, X. Su, Y. Kuang, X. Li, Z. Lu, B 40 and M@B 40 (M Li and Ba) fullerenes as potential molecular sensors for acetone detection: A first-principles study, Journal of Molecular Liquids. 264 (2018) 1–8. https://doi.org/10.1016/j.molliq.2018.05.046.

    Article  ADS  CAS  Google Scholar 

  12. M. Darvish Ganji, Z. Dalirandeh, A. Khosravi, A. Fereidoon, Aluminum nitride graphene for DMMP nerve agent adsorption and detection, Materials Chemistry and Physics. 145 (2014) 260–267. https://doi.org/10.1016/j.matchemphys.2014.02.021.

    Article  CAS  Google Scholar 

  13. A.A. Tomchenko, G.P. Harmer, B.T. Marquis, Detection of chemical warfare agents using nanostructured metal oxide sensors, Sensors and Actuators B: Chemical. 108 (2005) 41–55. https://doi.org/10.1016/j.snb.2004.11.059.

    Article  CAS  Google Scholar 

  14. Z. Rostami, M. Pashangpour, R. Moradi, DFT study on the chemical sensing properties of B24N24 nanocage toward formaldehyde, Journal of Molecular Graphics and Modelling. 72 (2017) 129–135. https://doi.org/10.1016/j.jmgm.2016.12.013.

    Article  CAS  PubMed  Google Scholar 

  15. M.D. Ganji, M. Tajbakhsh, M. Laffafchy, Nerve agents interacting with single wall carbon nanotubes: Density functional calculations, Solid State Sciences. 12 (2010) 1547–1553. https://doi.org/10.1016/j.solidstatesciences.2010.06.019.

    Article  ADS  CAS  Google Scholar 

  16. L. Zhang, D. Qin, J. Feng, T. Tang, H. Cheng, Rapid quantitative detection of luteolin using an electrochemical sensor based on electrospinning of carbon nanofibers doped with single-walled carbon nanoangles, Analytical Methods. 15 (2023) 3073–3083.

    Article  CAS  PubMed  Google Scholar 

  17. T. Tang, M. Zhou, J. Lv, H. Cheng, H. Wang, D. Qin, G. Hu, X. Liu, Sensitive and selective electrochemical determination of uric acid in urine based on ultrasmall iron oxide nanoparticles decorated urchin-like nitrogen-doped carbon, Colloids and Surfaces B: Biointerfaces. 216 (2022) 112538. https://doi.org/10.1016/j.colsurfb.2022.112538.

    Article  CAS  PubMed  Google Scholar 

  18. M.M. Karamjavan, K. Zare, A.M. Sefidan, M. Noei, A. Farajtabar, Characterization Of Electronic Structures On The Adsorption Behaviors Of Mercaptopurine Anticancer Drug From Surface Macromolecule Calix [4] Aren As Adsorbent By Spectral Studies And Dft Calculations, Surface Review and Letters. 29 (2022) 2250086.

  19. N. Sharma, R. Kakkar, Adsorption of sarin on MgO nanotubes: Role of doped and defect sites, Journal of Computational Science. 10 (2015) 225–236. https://doi.org/10.1016/j.jocs.2014.12.003.

    Article  Google Scholar 

  20. E. Tazikeh-Lemeski, Al12CN11 nano-cage sensitive to NH3 detection: A first-principles study, Journal of Molecular Structure. 1135 (2017) 166–173. https://doi.org/10.1016/j.molstruc.2017.01.006.

    Article  ADS  CAS  Google Scholar 

  21. S.-W. Zhang, T.M. Swager, Fluorescent Detection of Chemical Warfare Agents: Functional Group Specific Ratiometric Chemosensors, J. Am. Chem. Soc. 125 (2003) 3420–3421. https://doi.org/10.1021/ja029265z.

    Article  CAS  PubMed  Google Scholar 

  22. J.C. Escobar, M.S. Villanueva, A.B. Hernández, D. Cortés-Arriagada, E.C. Anota, Interactions of B12N12 fullerenes on graphene and boron nitride nanosheets: A DFT study, Journal of Molecular Graphics and Modelling. 86 (2019) 27–34. https://doi.org/10.1016/j.jmgm.2018.10.003.

    Article  CAS  PubMed  Google Scholar 

  23. M. Darvish Ganji, Z. Dalirandeh, A. Khosravi, A. Fereidoon, Aluminum nitride graphene for DMMP nerve agent adsorption and detection, Materials Chemistry and Physics. 145 (2014) 260–267. https://doi.org/10.1016/j.matchemphys.2014.02.021.

    Article  CAS  Google Scholar 

  24. Z. Wang, L. Dai, J. Yao, T. Guo, D. Hrynsphan, S. Tatsiana, J. Chen, Enhanced adsorption and reduction performance of nitrate by Fe–Pd–Fe3O4 embedded multi-walled carbon nanotubes, Chemosphere. 281 (2021) 130718. https://doi.org/10.1016/j.chemosphere.2021.130718.

    Article  CAS  PubMed  Google Scholar 

  25. M. Noei, M.M. Karamjavan, A.M. Sefidan, Effect of Et2Zn on Binding Spike Protein of SARS-Cov-2 and ACE2 from Cell Membrane, Russian Journal of Physical Chemistry A. 97 (2023) 1052–1057.

    Article  ADS  Google Scholar 

  26. M. Samadizadeh, A.A. Peyghan, S.F. Rastegar, Sensing behavior of BN nanosheet toward nitrous oxide: A DFT study, Chinese Chemical Letters. 26 (2015) 1042–1045. https://doi.org/10.1016/j.cclet.2015.05.048.

    Article  CAS  Google Scholar 

  27. M.T. Baei, B12N12 sodalite like cage as potential sensor for hydrogen cyanide, Computational and Theoretical Chemistry. 1024 (2013) 28–33. https://doi.org/10.1016/j.comptc.2013.09.018.

  28. J. Beheshtian, Z. Bagheri, M. Kamfiroozi, A. Ahmadi, Toxic CO detection by B12N12 nanocluster, Microelectronics Journal. 42 (2011) 1400–1403. https://doi.org/10.1016/j.mejo.2011.10.010.

    Article  CAS  Google Scholar 

  29. M. Noei, Different electronic sensitivity of BN and AlN nanoclusters to SO2 gas: DFT studies, Vacuum. 135 (2017) 44–49. https://doi.org/10.1016/j.vacuum.2016.10.029.

  30. A. Shokuhi Rad, K. Ayub, Adsorption of pyrrole on Al12N12, Al12P12, B12N12, and B12P12 fullerene-like nano-cages; a first principles study, Vacuum. 131 (2016) 135–141. https://doi.org/10.1016/j.vacuum.2016.06.012.

  31. T.T. Tran, K. Bray, M.J. Ford, M. Toth, I. Aharonovich, Quantum emission from hexagonal boron nitride monolayers, Nature Nanotech. 11 (2016) 37–41. https://doi.org/10.1038/nnano.2015.242.

    Article  ADS  CAS  Google Scholar 

  32. Q. Weng, X. Wang, X. Wang, Y. Bando, D. Golberg, Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications, Chem. Soc. Rev. 45 (2016) 3989–4012. https://doi.org/10.1039/C5CS00869G.

    Article  CAS  PubMed  Google Scholar 

  33. G. Ciofani, G.G. Genchi, I. Liakos, A. Athanassiou, D. Dinucci, F. Chiellini, V. Mattoli, A simple approach to covalent functionalization of boron nitride nanotubes, Journal of Colloid and Interface Science. 374 (2012) 308–314. https://doi.org/10.1016/j.jcis.2012.01.049.

    Article  ADS  CAS  PubMed  Google Scholar 

  34. K.K. Kim, A. Hsu, X. Jia, S.M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, J. Kong, Synthesis and Characterization of Hexagonal Boron Nitride Film as a Dielectric Layer for Graphene Devices, ACS Nano. 6 (2012) 8583–8590. https://doi.org/10.1021/nn301675f.

    Article  CAS  PubMed  Google Scholar 

  35. A. Loiseau, F. Willaime, N. Demoncy, G. Hug, H. Pascard, Boron Nitride Nanotubes with Reduced Numbers of Layers Synthesized by Arc Discharge, Phys. Rev. Lett. 76 (1996) 4737–4740. https://doi.org/10.1103/PhysRevLett.76.4737.

    Article  ADS  CAS  PubMed  Google Scholar 

  36. L. Cohen, S.G. Louie, Boron Nitride Nanotubes Nasreen G. Chopra, R. J. Luyken, K. Cherrey, Vincent H. Crespi, (n.d.).

  37. H.-S. Wu, X.-Y. Cui, X.-F. Qin, D.L. Strout, H. Jiao, Boron nitride cages from B12N12 to B36N36: square–hexagon alternants vs boron nitride tubes, J Mol Model. 12 (2006) 537–542. https://doi.org/10.1007/s00894-005-0042-6.

    Article  CAS  PubMed  Google Scholar 

  38. B. Yin, G. Wang, N. Sa, Y. Huang, Bonding analysis and stability on alternant B16N16 cage and its dimers, J Mol Model. 14 (2008) 789–795. https://doi.org/10.1007/s00894-008-0303-2.

    Article  CAS  PubMed  Google Scholar 

  39. J. Beheshtian, Z. Bagheri, M. Kamfiroozi, A. Ahmadi, A comparative study on the B12N12, Al12N12, B12P12 and Al12P12 fullerene-like cages, J Mol Model. 18 (2012) 2653–2658. https://doi.org/10.1007/s00894-011-1286-y.

    Article  CAS  PubMed  Google Scholar 

  40. jensen1993.pdf, (n.d.).

  41. J. Beheshtian, Z. Bagheri, M. Kamfiroozi, A. Ahmadi, Toxic CO detection by B12N12 nanocluster, Microelectronics Journal. 42 (2011) 1400–1403.

    Article  CAS  Google Scholar 

  42. A.R. Soltani, M.T. Baei, A DFT study on structure and electronic properties of BN nanostructures adsorbed with dopamine, Computation. 7 (2019) 61.

    Article  CAS  Google Scholar 

  43. A. Khalili, M.T. Baei, S. Hossein Hosseini Ghaboos, Improvement of antioxidative activity of apigenin by B12N12 nanocluster: Antioxidative mechanism analysis, Chemistryselect. 5 (2020) 1829–1836.

    Article  CAS  Google Scholar 

  44. D.V. Shtansky, A.T. Matveev, E.S. Permyakova, D.V. Leybo, A.S. Konopatsky, P.B. Sorokin, Recent Progress in Fabrication and Application of BN Nanostructures and BN-Based Nanohybrids, Nanomaterials. 12 (2022). https://doi.org/10.3390/nano12162810.

  45. R. Amirkhani, M.H. Omidi, R. Abdollahi, H. Soleymanabadi, Investigation of Sarin Nerve Agent Adsorption Behavior on BN Nanostructures: DFT Study, J Clust Sci. 29 (2018) 757–765. https://doi.org/10.1007/s10876-018-1398-y.

    Article  CAS  Google Scholar 

  46. Boron nitride nanoclusters as a sensor for Cyclosarin nerve agent: DFT and thermodynamics studies, SN Appl. Sci. 2 (2020) 574. https://doi.org/10.1007/s42452-020-2411-2.

    Article  CAS  Google Scholar 

  47. J. Beheshtian, A.A. Peyghan, Z. Bagheri, Adsorption and dissociation of Cl2 molecule on ZnO nanocluster, Applied Surface Science. 258 (2012) 8171–8176. https://doi.org/10.1016/j.apsusc.2012.05.016.

    Article  ADS  CAS  Google Scholar 

  48. J. Beheshtian, A.A. Peyghan, Z. Bagheri, Selective function of Al12N12 nano-cage towards NO and CO molecules, Computational Materials Science. 62 (2012) 71–74. https://doi.org/10.1016/j.commatsci.2012.05.041.

    Article  CAS  Google Scholar 

  49. H. Jouypazadeh, H. Farrokhpour, DFT and TD-DFT study of the adsorption and detection of sulfur mustard chemical warfare agent by the C 24, C 12 Si 12, Al 12 N 12, Al 12 P 12, Be 12 O 12, B 12 N 12 and Mg 12 O 12 nanocages, Journal of Molecular Structure. 1164 (2018) 227–238. https://doi.org/10.1016/j.molstruc.2018.03.051.

    Article  ADS  CAS  Google Scholar 

  50. P. Fallahi, H. Jouypazadeh, H. Farrokhpour, Theoretical studies on the potentials of some nanocages (Al12N12, Al12P12, B12N12, Be12O12, C12Si12, Mg12O12 and C24) on the detection and adsorption of Tabun molecule: DFT and TD-DFT study, Journal of Molecular Liquids. 260 (2018) 138–148. https://doi.org/10.1016/j.molliq.2018.03.085.

    Article  CAS  Google Scholar 

  51. M. Noei, C4H6 Adsorption on the Surface of a BN Nanotube: DFT Studies, International Journal of Chemical and Molecular Engineering. 9 (2015) 270–273.

  52. M. Noei, M. Arjmand, Removal of Cyanogen Toxic Gas from Environmental Systems by Using BN Nanosheet, Indian Journal of Fundamental and Applied Life Sciences (JLS). 5 (2015) 5074–5080.

    Google Scholar 

  53. A. Soltani, A.A. Peyghan, Z. Bagheri, H2O2 adsorption on the BN and SiC nanotubes: A DFT study, Physica E: Low-Dimensional Systems and Nanostructures. 48 (2013) 176–180. https://doi.org/10.1016/j.physe.2013.01.007.

  54. J. Cano Ordaz, E. Chigo Anota, M. Salazar Villanueva, M. Castro, Possibility of a magnetic [BN fullerene:B 6 cluster] nanocomposite as a vehicle for the delivery of dapsone, New J. Chem. 41 (2017) 8045–8052. https://doi.org/10.1039/C7NJ01133D.

    Article  CAS  Google Scholar 

  55. E. Chigo Anota, M. Salazar Villanueva, D. García Toral, L. Tepech Carrillo, M. del R. Melchor Martínez, Physicochemical properties of armchair non-stoichiometric boron nitride nanotubes: A density functional theory analysis, Superlattices and Microstructures. 89 (2016) 319–328. https://doi.org/10.1016/j.spmi.2015.11.020.

  56. L. Chen, Y. Zhao, J. Jing, H. Hou, Microstructural evolution in graphene nanoplatelets reinforced magnesium matrix composites fabricated through thixomolding process, Journal of Alloys and Compounds. 940 (2023) 168824. https://doi.org/10.1016/j.jallcom.2023.168824.

    Article  CAS  Google Scholar 

  57. L. Chen, Y. Zhao, M. Li, L. Li, L. Hou, H. Hou, Reinforced AZ91D magnesium alloy with thixomolding process facilitated dispersion of graphene nanoplatelets and enhanced interfacial interactions, Materials Science and Engineering: A. 804 (2021) 140793. https://doi.org/10.1016/j.msea.2021.140793.

    Article  CAS  Google Scholar 

  58. M. Noei, A.-A. Salari, M. Madani, M. Paeinshahri, H. Anaraki-Ardakani, Adsorption properties of CH3COOH on (6, 0),(7, 0), and (8, 0) zigzag, and (4, 4), and (5, 5) armchair single-walled carbon nanotubes: A density functional study, Arabian Journal of Chemistry. 10 (2017) S3001–S3006.

    Article  CAS  Google Scholar 

  59. T. Movlarooy, M.A. Fadradi, Adsorption of cyanogen chloride on the surface of boron nitride nanotubes for CNCl sensing, Chemical Physics Letters. 700 (2018) 7–14. https://doi.org/10.1016/j.cplett.2018.04.001.

    Article  ADS  CAS  Google Scholar 

  60. N.S. Bobbitt, M.L. Mendonca, A.J. Howarth, T. Islamoglu, J.T. Hupp, O.K. Farha, R.Q. Snurr, Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents, Chem. Soc. Rev. 46 (2017) 3357–3385. https://doi.org/10.1039/C7CS00108H.

    Article  CAS  PubMed  Google Scholar 

  61. G. Lu, J.T. Hupp, Metal – Organic Frameworks as Sensors: A ZIF-8 Based Fabry – Pérot Device as a Selective Sensor for Chemical Vapors and Gases, J. Am. Chem. Soc. 132 (2010) 7832–7833. https://doi.org/10.1021/ja101415b.

    Article  CAS  PubMed  Google Scholar 

  62. J.-R. Li, R.J. Kuppler, H.-C. Zhou, Selective gas adsorption and separation in metal–organic frameworks, Chem. Soc. Rev. 38 (2009) 1477. https://doi.org/10.1039/b802426j.

    Article  CAS  PubMed  Google Scholar 

  63. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, The Journal of Chemical Physics. 132 (2010) 154104. https://doi.org/10.1063/1.3382344.

    Article  ADS  CAS  PubMed  Google Scholar 

  64. T. Yanai, D.P. Tew, N.C. Handy, A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP), Chemical Physics Letters. 393 (2004) 51–57. https://doi.org/10.1016/j.cplett.2004.06.011.

    Article  ADS  CAS  Google Scholar 

  65. P.J. Hay, Gaussian basis sets for molecular calculations. The representation of 3 d orbitals in transition-metal atoms, The Journal of Chemical Physics. 66 (1977) 4377–4384. https://doi.org/10.1063/1.433731.

    Article  ADS  CAS  Google Scholar 

  66. S.F. Boys, F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Molecular Physics. 19 (1970) 553–566. https://doi.org/10.1080/00268977000101561.

    Article  ADS  CAS  Google Scholar 

  67. S. Bashiri, E. Vessally, A. Bekhradnia, A. Hosseinian, L. Edjlali, Utility of extrinsic [60] fullerenes as work function type sensors for amphetamine drug detection: DFT studies, Vacuum. 136 (2017) 156–162.

    Article  ADS  CAS  Google Scholar 

  68. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09 (Gaussian, Inc., Wallingford CT, 2009)., gaussian 09w, (n.d.).

  69. M.A.M. El-Mansy, Quantum chemical studies on structural, vibrational, nonlinear optical properties and chemical reactivity of indigo carmine dye, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 183 (2017) 284–290. https://doi.org/10.1016/j.saa.2017.04.047.

  70. K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nature Mater. 3 (2004) 404–409. https://doi.org/10.1038/nmat1134.

    Article  ADS  CAS  Google Scholar 

  71. L. Safari, E. Vessally, A. Bekhradnia, A. Hosseinian, L. Edjlali, A Density functional theory study of the sensitivity of two-dimensional BN nanosheet to nerve agents cyclosarin and tabun, Thin Solid Films. 623 (2017) 157–163. https://doi.org/10.1016/j.tsf.2017.01.006.

    Article  ADS  CAS  Google Scholar 

  72. M. Noei, H. Asadi, A.A. Salari, ADSORPTION OF PYRIDINE BY USING BN NANOTUBE: A DFT STUDY, 4 (2014).

  73. A. Bahari, A. jalalinejad, M. Bagheri, M. Amiri, First principles study of electronic and structural properties of single walled zigzag boron nitride nanotubes doped with the elements of group IV, Solid State Communications. 267 (2017) 1–5. https://doi.org/10.1016/j.ssc.2017.08.020.

    Article  ADS  CAS  Google Scholar 

  74. J.R. dos Santos, E.L. da Silva, O.V. de Oliveira, J.D. dos Santos, Theoretical study of sarin adsorption on (12,0) boron nitride nanotube doped with silicon atoms, Chemical Physics Letters. 738 (2020) 136816. https://doi.org/10.1016/j.cplett.2019.136816.

    Article  CAS  Google Scholar 

  75. M. Yoosefian, N. Etminan, M.Z. Moghani, S. Mirzaei, S. Abbasi, The role of boron nitride nanotube as a new chemical sensor and potential reservoir for hydrogen halides environmental pollutants, Superlattices and Microstructures. 98 (2016) 325–331. https://doi.org/10.1016/j.spmi.2016.08.049.

    Article  ADS  CAS  Google Scholar 

  76. M. Noei, Probing the electronic sensitivity of BN and carbon nanotubes to carbonyl sulfide: A theoretical study, Journal of Molecular Liquids. 224 (2016) 757–762.

    Article  CAS  Google Scholar 

  77. F. Kamali, G. Ebrahimzadeh-Rajaei, S. Mohajeri, A. Shamel, M. Khodadadi-Moghaddam, A computational design of X24Y24 (X = B, Al, and Y = N, P) nanoclusters as effective drug carriers for metformin anticancer drug: A DFT insight, Inorganic Chemistry Communications. 141 (2022) 109527. https://doi.org/10.1016/j.inoche.2022.109527.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the computer technology center of Karunya institute of technology and sciences for providing access towards computational facility to perform our theoretical calculations.

Funding

No Funding.

Author information

Authors and Affiliations

Authors

Contributions

S. Prince Makarios Paul: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Validation; Visualization; Roles/Writing - original draft; D. Parimala devi: Formal analysis; Funding acquisition; Methodology; Supervision; Validation; Writing - review & editing. G. Praveena: Formal analysis; Funding acquisition; Supervision; Validation; Writing - review & editing. P. Selvarengan: Resources; Software; Supervision; Validation; Visualization. Jeba Beula. R: Formal analysis; Investigation; Methodology. A. Abiram: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Resources; Software; Validation; Visualization; Writing - review & editing.

Corresponding author

Correspondence to A. Abiram.

Ethics declarations

Ethical Approval

We certify that we participated in the design of this work as well as the writing of the manuscript and to assume public responsibility for it. We have reviewed the final version of the manuscript, and have agreed to publish this manuscript. This manuscript has not been published elsewhere. All the authors are aware and agree to transmission, and no part of the manuscript has previously been published in another journal.

Conflict of Interest

All the authors declare that they have no conflict of interest towards this manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S.P.M., Parimala devi, D., Praveena, G. et al. Impact of Venomous Agent X (VX) Adsorption on the Structural and Electronic Properties of BN Nanosheet, Nanotube and nanocage-A DFT-D3 Study. J Clust Sci (2024). https://doi.org/10.1007/s10876-023-02539-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10876-023-02539-z

Keywords

Navigation