Skip to main content
Log in

Nonlinear partial differential equations on noncommutative Euclidean spaces

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

Noncommutative Euclidean spaces—otherwise known as Moyal spaces or quantum Euclidean spaces—are a standard example of a non-compact noncommutative geometry. Recent progress in the harmonic analysis of these spaces gives us the opportunity to highlight some of their peculiar features. For example, the theory of nonlinear partial differential equations has unexpected properties in this noncommutative setting. We develop elementary aspects of paradifferential calculus for noncommutative Euclidean spaces and give some applications to nonlinear evolution equations. We demonstrate how the analysis of some equations radically simplifies in the strictly noncommutative setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It is essential here that \({\mathcal {M}}\) admits a faithful representation on a separable Hilbert space.

References

  1. A. B. Aleksandrov and V. V. Peller. Operator Lipschitz functions. Uspekhi Mat. Nauk, 71(4(430)):3–106, 2016.

    Article  MathSciNet  Google Scholar 

  2. H. Amann. Linear and quasilinear parabolic problems. Vol. I, volume 89 of Monographs in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1995. Abstract linear theory.

  3. W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander. Vector-valued Laplace transforms and Cauchy problems, volume 96 of Monographs in Mathematics. Birkhäuser/Springer Basel AG, Basel, second edition, 2011.

  4. H. Bahouri, J. Chemin, and R. Danchin. Fourier analysis and nonlinear partial differential equations, volume 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2011.

  5. J. Bergh and J. Löfström. Interpolation spaces. An introduction. Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223.

  6. M. Sh. Birman and M. Z. Solomyak. Double Stieltjes operator integrals. In Probl. Math. Phys., No. I, Spectral Theory and Wave Processes (Russian), pages 33–67. Izdat. Leningrad. Univ., Leningrad, 1966.

  7. M. Sh. Birman and M. Z. Solomyak. Double Stieltjes operator integrals. II. In Problems of Mathematical Physics, No. 2, Spectral Theory, Diffraction Problems (Russian), pages 26–60. Izdat. Leningrad. Univ., Leningrad, 1967.

  8. M. Sh. Birman and M. Z. Solomyak. Double Stieltjes operator integrals. III. pages 27–53, 1973.

  9. M. Sh. Birman and M. Z. Solomyak. Double operator integrals in a Hilbert space. Integral Equations Operator Theory, 47(2):131–168, 2003.

    Article  MathSciNet  Google Scholar 

  10. O. Bratteli and D. W. Robinson. Operator algebras and quantum statistical mechanics. 2. Texts and Monographs in Physics. Springer-Verlag, Berlin, second edition, 1997. Equilibrium states. Models in quantum statistical mechanics.

  11. A. L. Carey, V. Gayral, A. Rennie, and F. Sukochev. Index theory for locally compact noncommutative geometries. Mem. Amer. Math. Soc., 231(1085):vi+130, 2014.

  12. T. Cazenave. Semilinear Schrödinger equations, volume 10 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.

  13. T. Cazenave and A. Haraux. An introduction to semilinear evolution equations, volume 13 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1998. Translated from the 1990 French original by Yvan Martel and revised by the authors.

  14. P. S. Chakraborty, D. Goswami, and K. B. Sinha. Probability and geometry on some noncommutative manifolds. J. Operator Theory, 49(1):185–201, 2003.

    MathSciNet  Google Scholar 

  15. Yu. L. Daleckiĭ and S. G. Kreĭn. Integration and differentiation of functions of Hermitian operators and applications to the theory of perturbations. Voronež. Gos. Univ. Trudy Sem. Funkcional. Anal., 1956(1):81–105, 1956.

    MathSciNet  Google Scholar 

  16. I. Daubechies. On the distributions corresponding to bounded operators in the Weyl quantization. Comm. Math. Phys., 75(3):229–238, 1980.

    Article  ADS  MathSciNet  Google Scholar 

  17. I. Daubechies. Continuity statements and counterintuitive examples in connection with Weyl quantization. J. Math. Phys., 24(6):1453–1461, 1983.

    Article  ADS  MathSciNet  Google Scholar 

  18. J. Diestel and J. J. Uhl, Jr. Vector measures. American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis, Mathematical Surveys, No. 15.

  19. P. Dodds, T. K. Dodds, F. Sukochev, and D. Zanin. Arithmetic-geometric mean and related submajorisation and norm inequalities for \(\tau \)-measurable operators: Part II. Integral Equations Operator Theory, 92(4):Paper No. 32, 60, 2020.

  20. P. Dodds, T. K. Dodds, F. Sukochev, and D. Zanin. Arithmetic-geometric mean and related submajorisation and norm inequalities for \(\tau \)-measurable operators. (submitted manuscript), 2019.

  21. M. Douglas and N. Nekrasov. Noncommutative field theory. Rev. Modern Phys., 73(4):977–1029, 2001.

    Article  ADS  MathSciNet  Google Scholar 

  22. K. Engel and R. Nagel. One-parameter semigroups for linear evolution equations, volume 194 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt.

  23. T. Fack and H. Kosaki. Generalized \(s\)-numbers of \(\tau \)-measurable operators. Pacific J. Math., 123(2):269–300, 1986.

    Article  MathSciNet  Google Scholar 

  24. H. Fujita and T. Kato. On the Navier-Stokes initial value problem. I. Arch. Rational Mech. Anal., 16:269–315, 1964.

    Article  ADS  MathSciNet  Google Scholar 

  25. L. Gao, M. Junge, and E. McDonald. Quantum Euclidean spaces with noncommutative derivatives J. Noncommut. Geom. 16 (2022), 153–213.

    Article  MathSciNet  Google Scholar 

  26. V. Gayral, J. M. Gracia-Bondí a, B. Iochum, T. Schücker, and J. C. Várilly. Moyal planes are spectral triples. Comm. Math. Phys., 246(3):569–623, 2004.

    Article  ADS  MathSciNet  Google Scholar 

  27. J. Ginibre and G. Velo. On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. J. Functional Analysis, 32(1):1–32, 1979.

    Article  MathSciNet  Google Scholar 

  28. A. M. González-Pérez, M. Junge, and J. Parcet. Singular integrals in quantum Euclidean spaces. Mem. Amer. Math. Soc. 272 (2021), no. 1334, xiii+90 pp.

  29. Y. Gordon and D. R. Lewis. Absolutely summing operators and local unconditional structures. Acta Math., 133:27–48, 1974.

    Article  MathSciNet  Google Scholar 

  30. J. M. Gracia-Bondía and J. C. Várilly. Algebras of distributions suitable for phase-space quantum mechanics. I. J. Math. Phys., 29(4):869–879, 1988.

    Article  ADS  MathSciNet  Google Scholar 

  31. L. Grafakos. Classical Fourier analysis, volume 249 of Graduate Texts in Mathematics. Springer, New York, third edition, 2014.

  32. H. J. Groenewold. On the principles of elementary quantum mechanics. Physica, 12:405–460, 1946.

    Article  ADS  MathSciNet  Google Scholar 

  33. B. C. Hall. Quantum theory for mathematicians, volume 267 of Graduate Texts in Mathematics. Springer, New York, 2013.

  34. T. Hytönen, J. van Neerven, M. Veraar, and L. Weis. Analysis in Banach spaces. Vol. II, volume 67 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Cham, 2017. Probabilistic methods and operator theory.

  35. T. Kato. Continuity of the map \(S\mapsto \mid S\mid \) for linear operators. Proc. Japan Acad., 49:157–160, 1973.

    MathSciNet  Google Scholar 

  36. M. Keyl, J. Kiukas, and R. F. Werner. Schwartz operators. Rev. Math. Phys., 28(3):1630001, 60, 2016.

  37. L. Lafleche. On quantum sobolev inequalities, 2022. arXiv:2210.03013v1

  38. P. G. Lemarié-Rieusset. The Navier-Stokes problem in the 21st century. CRC Press, Boca Raton, FL, 2016.

    Book  Google Scholar 

  39. J. Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math., 63(1):193–248, 1934.

    Article  MathSciNet  Google Scholar 

  40. G. Levitina, F. Sukochev, and D. Zanin. Cwikel estimates revisited. Proceedings of the London Mathematical Society, 120(2):265–304, 2020.

    Article  MathSciNet  Google Scholar 

  41. A. Lunardi. Analytic semigroups and optimal regularity in parabolic problems, volume 16 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Verlag, Basel, 1995.

  42. S. Lord, E. McDonald, F. Sukochev and D. Zanin Singular traces. Vol. 2. Trace formulas. Second edition. De Gruyter Studies in Mathematics, 46/2. De Gruyter, Berlin, 2023. xl+471 pp.

  43. E. McDonald, F. Sukochev, and X. Xiong. Quantum differentiability – the analytical perspective. Cyclic cohomology at 40: achievements and future prospects, 257-280. Proc. Sympos. Pure Math., 105

  44. E. McDonald, F. Sukochev, and X. Xiong. Quantum differentiability on noncommutative Euclidean spaces. Comm. Math. Phys., 379(2):491–542, 2020.

    Article  ADS  MathSciNet  Google Scholar 

  45. J. E. Moyal. Quantum mechanics as a statistical theory. Proc. Cambridge Philos. Soc., 45:99–124, 1949.

    Article  ADS  MathSciNet  Google Scholar 

  46. N. Nekrasov and A. Schwarz. Instantons on noncommutative \(\textbf{R}^4\), and \((2,0)\) superconformal six-dimensional theory. Comm. Math. Phys., 198(3):689–703, 1998.

    Article  ADS  MathSciNet  Google Scholar 

  47. V. V. Peller. Hankel operators in the theory of perturbations of unitary and selfadjoint operators. Funktsional. Anal. i Prilozhen., 19(2):37–51, 96, 1985.

  48. V. V. Peller. The behavior of functions of operators under perturbations. In A glimpse at Hilbert space operators, volume 207 of Oper. Theory Adv. Appl., pages 287–324. Birkhäuser Verlag, Basel, 2010.

  49. V. V. Peller. Multiple operator integrals in perturbation theory. Bull. Math. Sci., 6(1):15–88, 2016.

    Article  MathSciNet  Google Scholar 

  50. D. Potapov, F .Sukochev, D. Vella, and D. Zanin. A residue formula for locally compact noncommutative manifolds. In Positivity and Noncommutative Analysis, Trends in Mathematics. Birkhäuser Basel, 2019.

  51. J. Prüss and G. Simonett. Moving interfaces and quasilinear parabolic evolution equations, volume 105 of Monographs in Mathematics. Birkhäuser/Springer, [Cham], 2016.

  52. M. A. Rieffel. Deformation quantization for actions of \({\bf R}^d\). Mem. Amer. Math. Soc., 106(506):x+93, 1993.

  53. J. Rosenberg. Noncommutative variations on Laplace’s equation. Anal. PDE, 1(1):95–114, 2008.

    Article  MathSciNet  Google Scholar 

  54. T. Runst and W. Sickel. Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, volume 3 of De Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin, 1996.

  55. Y. Sawano. Theory of Besov spaces, volume 56 of Developments in Mathematics. Springer, Singapore, 2018.

  56. L. A. Takhtajan. Quantum mechanics for mathematicians, volume 95 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008.

  57. T. Tao. Nonlinear dispersive equations, volume 106 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. Local and global analysis.

  58. M. E. Taylor. Tools for PDE, volume 81 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2000. Pseudodifferential operators, paradifferential operators, and layer potentials.

  59. M. E. Taylor. Partial differential equations III. Nonlinear equations, volume 117 of Applied Mathematical Sciences. Springer, New York, second edition, 2011.

  60. F. B. Weissler. Local existence and nonexistence for semilinear parabolic equations in \(L^p.\)Indiana Univ. Math. J. 29 (1980), no.1, 79–102.

    Article  MathSciNet  Google Scholar 

  61. R. Werner. Quantum harmonic analysis on phase space. J. Math. Phys., 25(5):1404–1411, 1984.

    Article  ADS  MathSciNet  Google Scholar 

  62. R. Xia and X. Xiong. Mapping properties of operator-valued pseudo-differential operators. J. Funct. Anal., 277(9):2918–2980, 2019.

    Article  MathSciNet  Google Scholar 

  63. X. Xiong, Q. Xu, and Z. Yin. Sobolev, Besov and Triebel-Lizorkin spaces on quantum tori. Mem. Amer. Math. Soc., 252(1203):vi+118, 2018.

  64. A. Yagi. Abstract parabolic evolution equations and their applications. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2010.

    Book  Google Scholar 

  65. M. Zhao. Smoothing estimates for non commutative spaces. PhD thesis, University of Illinois at Urbana-Champaign, 2018. http://hdl.handle.net/2142/101570.

Download references

Acknowledgements

Thank you to G. Hong, M. Junge, P. Portal, K. Tulenov, H. Sharma, X. Xiong and D. Zanin for helpful discussions. I also wish to thank the anonymous reviewer for helpful comments. There are no conflicts of interest to report. Data sharing is not applicable to this article as no datasets were generated or analysed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward McDonald.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Existence theorems for parabolic differential equations

Appendix A. Existence theorems for parabolic differential equations

In this paper, we have used the theory of abstract Cauchy problems to deal with existence and uniqueness of partial differential equations on \({\mathbb {R}}^d_\theta \). The general theory of abstract Cauchy problems is covered in, e.g. [41, Chapter 4], [2, Section 1.2], [3, Chapter 3], [51, Chapter 5], [34, Appendix G], [64, 22, Chapter 7].

We have made use of a “blow-up” criterion (Theorem 7.3) which is certainly not novel but for which we have been unable to find a reference.

Proof of Theorem 7.3

Suppose that \(T_{x_0} < \infty \). If this is the case, then we must have \(\Vert x(s)\Vert _{Y} \rightarrow \infty \) as \(s\rightarrow T_{x_0}\). Indeed, otherwise there would exist \(R > 0\) and a sequence \(\{\varepsilon _j\}_{j=0}^\infty \) with \(\varepsilon _j\rightarrow 0\) such that \(\Vert x(T_{x_0}-\varepsilon _j)\Vert _Y \le R\). According to Theorem 7.1, there exists \(T_R\) such that the solution can then be extended to an interval \([0,T_{x_0}-\varepsilon _j+T_R)\). This contradicts the maximality of \(T_{x_0}\) when j is large enough, and hence, if \(T_{x_0}<\infty \) then

$$\begin{aligned} \sup _{0<t<T_{x_0}}\Vert x(t)\Vert _{Y} = \infty . \end{aligned}$$

The assumption of the theorem is that there exists \(0< C_{x_0} < \infty \) such that

$$\begin{aligned} \Vert F(x(s))\Vert _{X} \le C_{x_0}\Vert x(s)\Vert _Y,\quad 0\le s < T_{x_0}. \end{aligned}$$

Let \(0< r< t < T_{x_0}\). Then by definition, we have

$$\begin{aligned} x(t) = e^{tL}x_0 + \int _0^t e^{(t-s)L}F(x(s))\,\textrm{d}s. \end{aligned}$$

Using the contractivity of the semigroup \(e^{tL}\) and Lemma 7.2, it follows that

$$\begin{aligned} \Vert x(t)\Vert _Y \le \Vert x_0\Vert _Y+\int _0^{t} \Vert e^{(t-s)L}\Vert _{X\rightarrow Y}\Vert x(s)\Vert _Y \,\textrm{d}s. \end{aligned}$$

By Gronwall’s inequality

$$\begin{aligned} \Vert x(t)\Vert _Y \le \exp (\int _0^{t}\Vert e^{sL}\Vert _{X\rightarrow Y}\,\textrm{d}s)\Vert x_0\Vert _{Y} \le \exp (Ct^{1-\gamma })\Vert x_0\Vert _Y. \end{aligned}$$

Therefore, if \(T_{x_0}<\infty ,\) we have

$$\begin{aligned} \sup _{0< t< T_{x_0}} \Vert x(t)\Vert _{Y} \le \exp (CT_{x_0}^{1-\gamma })\Vert x_0\Vert _Y <\infty . \end{aligned}$$

which is a contradiction. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McDonald, E. Nonlinear partial differential equations on noncommutative Euclidean spaces. J. Evol. Equ. 24, 16 (2024). https://doi.org/10.1007/s00028-023-00928-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-023-00928-5

Navigation