Skip to main content

Advertisement

Log in

Betulinic acid induces apoptosis of HeLa cells via ROS-dependent ER stress and autophagy in vitro and in vivo

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Betulinic acid (BA), a naturally occurring lupane-type triterpenoid, possesses a wide range of potential activities against different types of cancer. However, the molecular mechanisms involved in anti-cervical cancer about BA were rarely investigated. Herein, the role of BA in cervical cancer suppression by ROS-mediated endoplasmic reticulum stress (ERS) and autophagy was deeply discussed. The findings revealed that BA activated Keap1/Nrf2 pathway and triggered mitochondria-dependent apoptosis due to ROS production. Furthermore, BA increased the intracellular Ca2+ levels, inhibited the expression of Beclin1 and promoted the expression of GRP78, LC3-II, and p62 associated with ERS and autophagy. Besides, BA initiated the formation of autophagosomes and inhibited autophagic flux by the co-administration of BA with 3-methyladenine (3-MA) and chloroquine (CQ), respectively. The in vivo experiment manifested that hydroxychloroquine (HCQ) enhanced the apoptosis induced by BA. For the first time, we demonstrated that BA could initiate early autophagy, inhibit autophagy flux, and induce protective autophagy in HeLa cells. Thus, BA could be a potential chemotherapy drug for cervical cancer, and inhibition of autophagy could enhance the anti-tumor effect of BA. However, the interactions of signaling factors between ERS-mediated and autophagy-mediated apoptosis deserve further attention.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Allanson ER, Schmele KM (2021) Preventing cervical cancer globally: are we making progress? Cancer Prev Res 14(12):1055–1060. https://doi.org/10.1158/1940-6207

    Article  Google Scholar 

  2. Vora C, Gupta S (2018) Targeted therapy in cervical cancer. Esmo Open 3:e000462. https://doi.org/10.1136/esmoopen-2018-000462

    Article  PubMed  Google Scholar 

  3. Chen T, Wei M, Liu Y, Wang H, Zhou W, Bi YY, Zhang ZJ (2020) Rising mortality rate of cervical cancer in younger women in urban China. J Gen Intern Med 35(2):593–593. https://doi.org/10.1007/s11606-018-4732-z

    Article  PubMed  Google Scholar 

  4. Amiri S, Dastghaib S, Ahmadi M, Mehrbod P, Khadem F, Behrouj H, Aghanoori MR, Machaj F, Ghamsari M, Rosik J, Hudecki A, Afkhami A, Hashemi M, Los MJ, Mokarram P, Madrakian T, Ghavami S (2020) Betulin and its derivatives as novel compounds with different pharmacological effects. Biotechnol Adv 38:107409. https://doi.org/10.1016/j.biotechadv.2019.06.008

    Article  CAS  PubMed  Google Scholar 

  5. Jiang W, Li X, Dong S, Zhou W (2021) Betulinic acid in the treatment of tumour diseases: application and research progress. Biomed Pharmacother 142:111990. https://doi.org/10.1016/j.biopha.2021.111990

    Article  CAS  PubMed  Google Scholar 

  6. Hordyjewska A, Ostapiuk A, Horecka A, Kurzepa J (2019) Betulin and betulinic acid: triterpenoids derivatives with a powerful biological potential. Phytochem Rev 18(3):929–951. https://doi.org/10.1007/s11101-019-09623-1

    Article  CAS  Google Scholar 

  7. Moloney JN, Cotter TG (2018) ROS signalling in the biology of cancer. Semin Cell Dev Biol 80:50–64. https://doi.org/10.1016/j.semcdb.2017.05.023

    Article  CAS  PubMed  Google Scholar 

  8. Kumari S, Badana AK, Murali Mohan G, Shailender G, Malla R (2018) Reactive oxygen species: a key constituent in cancer survival. Biomarker Insights 13:1177271918755391. https://doi.org/10.1177/1177271918755391

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zahra W, Rai SN, Birla H, Sen Singh S, Rathore AS, Dilnashin H, Singh R, Keswani C, Singh RK, Singh SP (2020) Neuroprotection of rotenone-induced parkinsonism by ursolic acid in PD mouse model. Cns Neurol Disod-DR 19(7):527–540. https://doi.org/10.2174/1871527319666200812224457

    Article  CAS  Google Scholar 

  10. Rai SN, Yadav SK, Singh D, Singh SP (2016) Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced parkinsonian mouse model. J Chem Neuroanat 71:41–49. https://doi.org/10.1016/j.jchemneu.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  11. Rai SN, Zahra W, Singh SS, Birla H, Keswani C, Dilnashin H, Rathore AS, Singh R, Singh RK, Singh SP (2019) Anti-inflammatory activity of ursolic acid in MPTP-induced parkinsonian mouse model. Neurotox Res 36(3):452–462. https://doi.org/10.1007/s12640-019-00038-6

    Article  CAS  PubMed  Google Scholar 

  12. Gao L, Loveless J, Shay C, Teng Y, Guest PC (2020) Targeting ROS-mediated crosstalk between autophagy and apoptosis in cancer. Adv Exp Med Biol 1260:1–12. https://doi.org/10.1007/978-3-030-42667-5_1

    Article  CAS  PubMed  Google Scholar 

  13. Hampton RY (2022) ER-associated degradation in protein quality control and cellular regulation. Curr Opin Cell Biol 14(4):476–482. https://doi.org/10.1016/s0955-0674(02)00358-7

    Article  Google Scholar 

  14. Wang MX, Law ME, Castellano RK, Law BK (2018) The unfolded protein response as a target for anticancer therapeutics. Crit Rev Oncol Hemat 127:66–79. https://doi.org/10.1016/j.critrevonc.2018.05.003

    Article  Google Scholar 

  15. Feng YC, He D, Yao ZY, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24(1):24–41. https://doi.org/10.1038/cr.2013.168

    Article  CAS  PubMed  Google Scholar 

  16. Singh SS, Vats S, Chia AYQ, Tan TZ, Deng S, Ong MS, Arfuso F, Yap CT, Goh BC, Sethi G, Huang RYJ, Shen HM, Manjithaya R, Kumar AP (2018) Dual role of autophagy in hallmarks of cancer. Oncogene 37(9):1142–1158. https://doi.org/10.1038/s41388-017-0046-6

    Article  CAS  PubMed  Google Scholar 

  17. Behrends C, Sowa ME, Gygi SP, Harper JW (2010) Network organization of the human autophagy system. Nature 466(7302):68-U84. https://doi.org/10.1038/nature09204

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Walczak M, Martens S (2013) Dissecting the role of the Atg12-Atg5-Atg16 complex during autophagosome formation. Autophagy 9(3):424–425. https://doi.org/10.4161/auto.22931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang HL, Lin RW, Karuppaiya P, Mathew DC, Way TD, Lin HC, Lee CC, Hseu YC (2019) Induction of autophagic cell death in human ovarian carcinoma cells by antrodia salmonea through increased reactive oxygen species generation. J Cell Physiol 234(7):10747–10760. https://doi.org/10.1002/jcp.27749

    Article  CAS  PubMed  Google Scholar 

  20. Yang HL, Tsai CH, Shrestha S, Lee CC, Liao JW, Hseu YC (2021) Coenzyme Q(0), a novel quinone derivative of antrodia camphorata, induces ROS-mediated cytotoxic autophagy and apoptosis against human glioblastoma cells in vitro and in vivo. Food Chem Toxicol 155:112384. https://doi.org/10.1016/j.fct.2021.112384.y

    Article  CAS  PubMed  Google Scholar 

  21. Fulda S (2008) Betulinic acid for cancer treatment and prevention. Int J Mol Sci 9(6):1096–1107. https://doi.org/10.3390/ijms9061096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rzeski W, Stepulak A, Szymańsk M, Sifringer M, Kaczor J, Wejksza K, Zdzisinska B, Kandefer-Szerszén M (2006) Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells. Naunyn Schmiedebergs Arch Pharmacol 374(1):11–20. https://doi.org/10.1007/s00210-006-0090-1

    Article  CAS  PubMed  Google Scholar 

  23. Chen FY, Zhong ZF, Tan HY, Guo W, Zhang C, Cheng CS, Wang N, Ren JG, Feng YB (2020) Suppression of lncRNA MALAT1 by betulinic acid inhibits hepatocellular carcinoma progression by targeting IAPs via miR-22–3p. Clin Transl Med 10(6):e190. https://doi.org/10.1002/ctm2.190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zheng YF, Liu PX, Wang N, Wang SQ, Yang BW, Li M, Chen JP, Situ HL, Xie MQ, Lin Y, Wang ZY (2019) Betulinic acid suppresses breast cancer metastasis by targeting GRP78-mediated glycolysis and ER stress apoptotic pathway. Oxid Med Cell Longev 19(2019):8781690. https://doi.org/10.1155/2019/8781690

    Article  CAS  Google Scholar 

  25. Kim H, Xue X (2020) Detection of total reactive oxygen species in adherent cells by 2 ’,7 ’-dichlorodihydrofluorescein diacetate staining. Jove-J Vis Exp 23(160):e60682

    Google Scholar 

  26. Varghese E, Samuel SM, Sadiq Z, Kubatka P, Liskova A, Benacka J, Pazinka P, Kruzliak P, Büsselberg, (2019) Anti-cancer agents in proliferation and cell death: the calcium connection. Int J Mol Sci 20(12):3017. https://doi.org/10.3390/ijms20123017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li XH, He SK, Ma BY (2020) Autophagy and autophagy-related proteins in cancer. Mol Cancer 19(1):12. https://doi.org/10.1186/s12943-020-1138-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Purohit V, Simeone DM, Lyssiotis CA (2019) Metabolic regulation of redox balance in cancer. Cancers 11(7):955. https://doi.org/10.3390/cancers11070955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Singh SS, Rai SN, Birla H, Zahra W, Kumar G, Gedda MR, Tiwari N, Patnaik R, Singh RK, Singh SP (2018) Effect of chlorogenic acid supplementation in MPTP-Intoxicated mouse. Front Pharmacol 6(9):757. https://doi.org/10.3389/fphar.2018.00757

    Article  CAS  Google Scholar 

  30. Singh SS, Rai SN, Birla H, Zahra W, Rathore AS, Dilnashin H, Singh R, Singh SP (2020) Neuroprotective effect of chlorogenic acid on mitochondrial dysfunction-mediated apoptotic death of DA neurons in a parkinsonian mouse model. Oxid Med Cell Longev 27:6571484. https://doi.org/10.1155/2020/6571484

    Article  CAS  Google Scholar 

  31. Tang JY, Fu OY, Hou MF, Huang HW, Wang HR, Li KT, Fayyaz S, Shu CW, Chang HW (2019) Oxidative stress-modulating drugs have preferential anticancer effects - involving the regulation of apoptosis, DNA damage, endoplasmic reticulum stress, autophagy, metabolism, and migration. Semin Cancer Biol 58:109–117. https://doi.org/10.1016/j.semcancer.2018.08.010

    Article  CAS  PubMed  Google Scholar 

  32. Pillai R, Hayashi M, Zavitsanou AM, Papagiannakopoulos T (2022) NRF2: KEAPing tumors protected. Cancer Discov 12(3):625–643. https://doi.org/10.1158/2159-8290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin YN, Jiang M, Chen WJ, Zhao TJ, Wei YF (2019) Cancer and ER stress: mutual crosstalk between autophagy, oxidative stress and inflammatory response. Biomed Pharmacother 118:109249. https://doi.org/10.1016/j.biopha.2019.109249

    Article  CAS  PubMed  Google Scholar 

  34. Chen P, Li YQ, Zhou Z, Pan CQ, Zeng LH (2023) Lathyrol promotes ER stress-induced apoptosis and proliferation inhibition in lung cancer cells by targeting SERCA2. Biomed Pharmacother 158:114123. https://doi.org/10.1016/j.biopha.2022.114123

    Article  CAS  PubMed  Google Scholar 

  35. Yoshii SR, Mizushima N (2017) Monitoring and measuring autophagy. Int J Mol Sci 18(9):1865. https://doi.org/10.3390/ijms18091865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xie HQ, Li XT, Yang WW, Yu LP, Jiang XS, Chen YJ, Shen ZF, Li CH, Gu ME, Shi LG (2020) N6-(2-hydroxyethyl)-Adenosine induces apoptosis via ER stress and autophagy of gastric carcinoma cells in vitro and in vivo. Int J Mol Sci 21(16):5815. https://doi.org/10.3390/iims21165815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu XJ, Liu L, Wang X, Jin YB, Wang S, Xie Q, Jin YH, Zhang ML, Liu YH, Li JF, Wang ZY, Fu XJ, Jin CY (2023) Necroptosis inhibits autophagy by regulating the formation of RIP3/p62/Keap1 complex in shikonin-induced ROS dependent cell death of human bladder cancer. Phytomedicine 118:154943. https://doi.org/10.1016/jphymed.2023.154943

    Article  CAS  PubMed  Google Scholar 

  38. Shen H, Yin L, Deng GL, Guo C, Han Y, Li YY, Cai CJ, Fu YJ, Liu SS, Zeng S (2018) Knockdown of Beclin-1 impairs epithelial-mesenchymal transition of colon cancer cells. J Cell Biochem 119(8):7022–7031. https://doi.org/10.1002/jcb.26912

    Article  CAS  PubMed  Google Scholar 

  39. Li XN, Su J, Xia MH, Li HY, Xu Y, Ma CH, Ma LW, Kang JS, Yu HM, Zhang ZC, Sun LK (2015) Caspase-mediated cleavage of Beclin1 inhibits autophagy and promotes apoptosis induced by S1 in human ovarian cancer SKOV3 cells. Apoptosis. https://doi.org/10.1007/s10495-015-1197-y

    Article  PubMed  Google Scholar 

  40. Wang S, Wang KX, Zhang CD, Zhang WF, Xu Q, Wang YT, Zhang YL, Li Y, Zhang Y, Zhu HF, Song FZ, Lei YL, Bu YQ (2017) Overaccumulation of p53-mediated autophagy protects against betulinic acid-induced apoptotic cell death in colorectal cancer cells. Cell Death Dis 8:e3087. https://doi.org/10.1038/cddis.2017.485

    Article  PubMed  PubMed Central  Google Scholar 

  41. Xu SY, Miao YX, Dong JS, Cui LY, Liu KJ, Li JJ, Meng X, Zhu GQ, Wang H (2023) Selenomethionine inhibits NF-κB-mediated inflammatory responses of bovine mammary epithelial cells caused by klebsiella pneumoniae by increasing autophagic flux. Biol Trace Elem Res. https://doi.org/10.1007/s12011-023-03757-2

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wu J, Guo Q, Li J, Yuan H, Xiao C, Qiu J, Wu Q, Wang D (2023) Loperamide induces protective autophagy and apoptosis through the ROS/JNK signaling pathway in bladder cancer. Biochem Pharmacol 218:115870. https://doi.org/10.1016/j.bcp.2023.115870

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82073986).

Author information

Authors and Affiliations

Authors

Contributions

CP carried out bioassays and prepared the manuscript; ZXE performed the isolation of the compounds and prepared the manuscript; FQM carried out the MTT assay; ZZX and LCZ round off the manuscript; LFL and ZY provided the technical guidance; ZCC directed the project administration and funding acquisition; WAZ conceived and directed this investigation. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Aizhi Wu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44604 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Zhang, X., Fang, Q. et al. Betulinic acid induces apoptosis of HeLa cells via ROS-dependent ER stress and autophagy in vitro and in vivo. J Nat Med (2024). https://doi.org/10.1007/s11418-024-01782-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11418-024-01782-6

Keywords

Navigation