Skip to main content
Log in

Finite Difference Time Domain Methods for the Dirac Equation Coupled with the Chern–Simons Gauge Field

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We introduce finite difference time domain (FDTD) methods for solving the Dirac equation coupled with the Chern–Simons gauge field and provide their error estimates. To discretize the spinor equation, we utilize well-known FDTD schemes, including the Crank–Nicolson method, leap-frog method, and semi-implicit methods. On the other hand, to discretize the gauge equations, we mainly employ the Lorenz gauge condition and derive Crank–Nicolson or leap-frog type finite difference methods for the gauge equations. We establish the error estimates for the introduced FDTD methods and prove the second-order accuracy both in space and time. Numerical examples are also presented to validate the second-order convergence and illustrate the dependencies of the numerical solutions on the parameters or gauge conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anderson, C.D.: The positive electron. Phys. Rev. 43, 491–498 (1933)

    Article  Google Scholar 

  2. Alvarez, A.: Linearized Crank–Nicholson scheme for nonlinear Dirac equations. J. Comput. Phys. 99, 348–350 (1992)

    Article  MathSciNet  Google Scholar 

  3. Antoine, X., Fillion-Gourdeau, F., Lorin, E., MacLean, S.: Pseudospectral computational methods for the time-dependent Dirac equation in static curved spaces. J. Comput. Phys. 411, 109412 (2020)

    Article  MathSciNet  Google Scholar 

  4. Bao, W., Cai, Y., Jia, X., Tang, Q.: Numerical methods and comparison for the Dirac equation in the nonrelativistic limit regime. J. Sci. Comput. 71, 1094–1134 (2017)

    Article  MathSciNet  Google Scholar 

  5. Bao, W., Cai, Y., Jia, X., Yin, J.: Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime. Sci. China Math. 59, 1461–1494 (2016)

    Article  MathSciNet  Google Scholar 

  6. Bao, W., Feng, Y., Yi, W.: Long time error analysis of finite difference time domain methods for the nonlinear Klein–Gordon equation with weak nonlinearity. Commun. Comput. Phys. 26, 1307–1334 (2019)

    Article  MathSciNet  Google Scholar 

  7. Brinkman, D., Heitzinger, C., Markowich, P.A.: A convergent 2D finite-difference scheme for the Dirac–Poisson system and the simulation of graphene. J. Comput. Phys. 257, 318–332 (2014)

    Article  MathSciNet  Google Scholar 

  8. Bao, W., Li, X.: An efficient and stable numerical method for the Maxwell–Dirac system. J. Comput. Phys. 199, 663–687 (2004)

    Article  MathSciNet  Google Scholar 

  9. Braun, J.W., Su, Q., Grobe, R.: Numerical approach to solve the time-dependent Dirac equation. Phys. Rev. A 59, 604–612 (1999)

    Article  Google Scholar 

  10. Cho, Y.M., Kim, J.W., Park, D.H.: Fermionic vortex solutions in Chern–Simons electrodynamics. Phys. Rev. D 45, 3802–3806 (1992)

    Article  MathSciNet  Google Scholar 

  11. Dunne, G.V.: Self-Dual Chern–Simons Theories. Springer, New York (1995)

    Book  Google Scholar 

  12. Dujardin, G., Faou, E.: Long time behavior of splitting methods applied to the linear Schrödinger equation. C. R. Math. Acad. Sci. Paris 344, 89–92 (2007)

    Article  MathSciNet  Google Scholar 

  13. Feng, Y.: Long time error analysis of the fourth-order compact finite difference methods for the nonlinear Klein–Gordon equation with weak nonlinearity. Numer. Methods Partial Differ. Equ. 37, 897–914 (2021)

    Article  MathSciNet  Google Scholar 

  14. Fillion-Gourdeau, F., Gagnon, D., Lefebvre, C., Maclean, S.: Time-domain quantum interference in graphene. Phys. Rev. B 94, 125423 (2016)

    Article  Google Scholar 

  15. Fillion-Gourdeau, F., Lorin, E., Bandrauk, A.D.: Numerical solution of the time-dependent Dirac equation in coordinate space without fermion-doubling. Comput. Phys. Comm. 183, 1403–1415 (2012)

    Article  MathSciNet  Google Scholar 

  16. Fillion-Gourdeau, F., Lorin, E., Bandrauk, A.D.: Galerkin method for unsplit 3-d Dirac equation using atomically/kinetically balanced B-spline basis. J. Comput. Phys. 307, 122–145 (2016)

    Article  MathSciNet  Google Scholar 

  17. Feng, Y., Yin, J.: Spatial resolution of different discretizations over long-time for the Dirac equation with small potentials. J. Comput. Appl. Math. 412, 114342 (2022)

    Article  MathSciNet  Google Scholar 

  18. Gosse, L.: A well-balanced and asymptotic-preserving scheme for the one-dimensional linear Dirac equation. BIT Numer. Math. 55, 433–458 (2015)

    Article  MathSciNet  Google Scholar 

  19. Huang, Z., Jin, S., Markowich, P.A., Sparber, C., Zheng, C.: A time-splitting spectral scheme for the Maxwell–Dirac system. J. Comput. Phys. 208, 761–789 (2005)

    Article  MathSciNet  Google Scholar 

  20. Hong, J., Li, C.: Multi-symplectic Runge–Kutta methods for nonlinear Dirac equations. J. Comput. Phys. 211, 448–472 (2006)

    Article  MathSciNet  Google Scholar 

  21. Hammer, R., Pötz, W., Arnold, A.: Single-cone real-space finite difference scheme for the time-dependent Dirac equation. J. Comput. Phys. 265, 50–70 (2014)

    Article  MathSciNet  Google Scholar 

  22. Hammer, R., Pötz, W., Arnold, A.: A dispersion and norm preserving finite difference scheme with transparent boundary conditions for the Dirac equation in (1+1)D. J. Comput. Phys. 256, 728–747 (2014)

    Article  MathSciNet  Google Scholar 

  23. Horvathy, P.A., Zhang, P.: Vortices in (abelian) Chern–Simons gauge theory. Phys. Rep. 481, 83–142 (2009)

    Article  MathSciNet  Google Scholar 

  24. Kim, J., Moon, B.: Finite difference methods for the one-dimensional Chern–Simons gauged models. Discrete Contin. Dyn. Syst. Ser. B 27, 6417–6439 (2022)

    Article  MathSciNet  Google Scholar 

  25. Li, J.: Energy-preserving exponential integrator Fourier pseudo-spectral schemes for the nonlinear Dirac equation. Appl. Numer. Math. 172, 1–26 (2022)

    Article  MathSciNet  Google Scholar 

  26. Li, S., Bhaduri, R.K.: Planar solitons of the gauged Dirac equation. Phys. Rev. D 43, 3573–3574 (1991)

    Article  Google Scholar 

  27. Lopez, A., Fradkin, E.: Fractional quantum Hall effect and Chern–Simons gauge theories. Phys. Rev. B 44, 5246–5262 (1991)

    Article  Google Scholar 

  28. Li, J., Wang, T.: Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation. Appl. Numer. Math. 162, 150–170 (2021)

    Article  MathSciNet  Google Scholar 

  29. Li, J., Wang, T.: Analysis of a conservative fourth-order compact finite difference scheme for the Klein–Gordon–Dirac equation. Comput. Appl. Math. 40, Article number 114 (2021)

  30. Li, J., Zhu, L.: A uniformly accurate exponential wave integrator Fourier pseudo-spectral method with structure-preservation for long-time dynamics of the Dirac equation with small potentials. Numer. Algorithms 92, 1367–1401 (2023)

    Article  MathSciNet  Google Scholar 

  31. Ma, Y., Yin, J.: Error bounds of the finite difference time domain methods for the Dirac equation in the semiclassical regime. J. Sci. Comput. 81, 1801–1822 (2019)

    Article  MathSciNet  Google Scholar 

  32. Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of the graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  Google Scholar 

  33. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  Google Scholar 

  34. Shebalin, J.V.: Numerical solution of the coupled Dirac and Maxwell equations. Phys. Lett. A 226, 1–6 (1997)

    Article  MathSciNet  Google Scholar 

  35. Salamin, Y., Hu, S.X., Hatsagortsyan, K.Z., Keitel, C.H.: Relativistic high-power laser-matter interactions. Phys. Rep. 427, 41–155 (2006)

    Article  Google Scholar 

  36. Shao, S.H., Tang, H.Z.: Higher-order accurate Runge–Kutta discontinuous Galerkin methods for a nonlinear Dirac model. Discrete Contin. Dyn. Syst. Ser. B 6, 623–640 (2006)

    MathSciNet  Google Scholar 

  37. Wang, R., Wang, B., Sedrakyan, T.: Chern–Simons superconductors and their instabilities. Phys. Rev. B 105, 054404 (2022)

    Article  Google Scholar 

  38. Wang, H., Tang, H.: An efficient adaptive mesh redistribution method for a nonlinear Dirac equation. J. Comput. Phys. 222, 176–193 (2007)

    Article  MathSciNet  Google Scholar 

  39. Xu, J., Shao, S., Tang, H.: Numerical methods for nonlinear Dirac equation. J. Comput. Phys. 245, 131–149 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

J. Kim is grateful for support by the Open KIAS Center at Korea Institute for Advanced Study.

Funding

The work of B. Moon is supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (NRF-2022R1I1A1A01059922).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bora Moon.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Proof of the Conservation of the Energy

Appendix A. Proof of the Conservation of the Energy

In this appendix, we provide a proof for the conservation of the energy E(t) of the CSD equation. Recall that the energy E(t) is given by

$$\begin{aligned} E(t)=\int _{\Omega }-i \sum _{i=1}^2\psi ^\dagger \alpha ^i(\partial _i-i A_i)\psi +\psi ^\dagger \beta \psi \,d x\,d y.\end{aligned}$$

To show that \(\frac{d }{d t}E(t)=0\), we first multiply (1.2)\(_1\) by \((\partial _t\psi -i A_0\psi )^\dagger \) and take the real part to obtain

$$\begin{aligned} 0&=Re \left[ \sum _{i=1}^2 (\partial _t\psi -i A_0\psi )^\dagger \alpha ^i(-i \partial _i\psi -A_i \psi )+(\partial _t\psi -i A_0\psi )^\dagger \beta \psi \right] \\&=Re \left[ \sum _{i=1}^2 \left( (\partial _t\psi )^\dagger \alpha ^i(-i \partial _i\psi -A_i\psi )+i A_0\psi ^\dagger \alpha ^i(-i \partial _i\psi )\right) +(\partial _t\psi )^\dagger \beta \psi \right] \\&=\frac{1}{2}\sum _{i=1}^2\left( (\partial _t\psi )^\dagger \alpha ^i(-i \partial _i\psi -A_i\psi )+(i \partial _i\psi ^\dagger -A_i\psi ^\dagger )\alpha ^i(\partial _t\psi )\right. \\&\left. \quad +A_0(\psi ^\dagger \alpha ^i\partial _i\psi +(\partial _i\psi )^\dagger \alpha ^i\psi )\right) \\&\quad +\frac{1}{2}\left( (\partial _t\psi )^\dagger \beta \psi +\psi ^\dagger \beta (\partial _t\psi )\right) . \end{aligned}$$

Then, integrating over the domain \(\Omega \) yields the following:

$$\begin{aligned} \frac{1}{2}\frac{d E(t)}{d t}&=\frac{1}{2}\frac{d }{d t}\int _{\Omega }-i \sum _{i=1}^2 \psi ^\dagger \alpha ^i(\partial _i-i A_i)\psi +\psi ^\dagger \beta \psi \,d x\,d y\\&=\frac{1}{2}\sum _{i=1}^2\int _{\Omega } (\partial _t\psi )^\dagger \alpha ^i(-i \partial _i\psi -A_i\psi )\\&\quad +\psi ^\dagger \alpha ^i(-i \partial _i\partial _t\psi -A_i\partial _t\psi )-(\partial _t A_i)\psi ^\dagger \alpha ^i\psi \,d x\,d y\\&\quad +\frac{1}{2}\int _{\Omega }(\partial _t\psi )^\dagger \beta \psi +\psi ^\dagger \beta (\partial _t\psi )\,d x\,d y\\&=\frac{1}{2}\sum _{i=1}^2\int _{\Omega }-A_0\partial _i(\psi ^\dagger \alpha ^i\psi )-(\partial _tA_i)\psi ^\dagger \alpha ^i\psi \,d x\,d y\\&=\frac{1}{2}\sum _{i=1}^2\int _{\Omega }(\partial _iA_0-\partial _t A_i)(\psi ^\dagger \alpha ^i\psi )\,d x\,d y=0, \end{aligned}$$

where we used the gauge equation in the last equality. Therefore, the energy E(t) for the CSD equation is conserved, regardless of the gauge condition.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Moon, B. Finite Difference Time Domain Methods for the Dirac Equation Coupled with the Chern–Simons Gauge Field. J Sci Comput 99, 9 (2024). https://doi.org/10.1007/s10915-024-02473-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02473-w

Keywords

Mathematics Subject Classification

Navigation