Skip to main content
Log in

Preparation and characterization of Fe3O4/ZIF-8 and Fe3O4–MnO2/ZIF-8 composites

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) have been employed in many studies recently because of their stability, porosity, and high surface area. Although zeolitic imidazole frameworks (ZIF-8) have many advantages among MOFs, they have disadvantages such as low activity, conductivity, and reusability depending on the application. To overcome these drawbacks, Fe3O4 and a mixture of Fe3O4 and MnO2 were added into the structure of ZIF-8. The SEM and STEM analysis of the synthesized materials showed that the polyhedral structure of ZIF-8 was hardly affected by the integration of metal oxides into the structure. FTIR and XPS results showed the presence of peaks arising from organic ligands and metal bonds with ZIF-8 in metal oxide/ZIF-8. Addition of Fe3O4 and Fe3O4–MnO2 to structure of ZIF-8 decreased the surface area of ZIF-8 with the formation of mesopores and accumulation of metal oxide particles in pores. When the synthesized metal oxide/ZIF-8 samples were tested in supercapacitor applications, MnO2/ZIF-8 electrode showed the highest specific capacitance. In addition, the presence of metal oxides in the ZIF-8 improved conductivity of the material. Based on the properties of metal oxide/ZIF-8 composites, the materials have also a potential for applications such as gas storage, adsorption, catalysts, and membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

No computer codes are developed. All the experimental results are presented and discussed in the manuscript.

References

  1. H. Dai, X. Yuan, L. Jiang, H. Wang, J. Zhang, J. Zhang, T. Xiong, Coord. Chem. Rev. 441, 213985 (2021)

    Article  CAS  Google Scholar 

  2. A. Paul, I.K. Banga, S. Muthukumar, S. Prasad, ACS Omega 7, 26993 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. A.A. Tezerjani, R. Halladj, S. Askari, RSC Adv. 11, 19914 (2021)

    Article  Google Scholar 

  4. A. Mustaqim, B. Yuliarto, and Nugraha, in IOP Conf. Ser. Mater. Sci. Eng. (IOP Publishing, 2018), p. 12053.

  5. J.J. Beh, J.K. Lim, E.P. Ng, B.S. Ooi, Mater. Chem. Phys. 216, 393 (2018)

    Article  CAS  Google Scholar 

  6. M.A. Nazir, T. Najam, K. Shahzad, M.A. Wattoo, T. Hussain, M.K. Tufail, S.S.A. Shah, A. Ur Rehman, Surfaces and Interfaces 34, 102324 (2022)

    Article  CAS  Google Scholar 

  7. A.M. Sabzevar, M. Ghahramaninezhad, M.N. Shahrak, Fuel 288, 119586 (2021)

    Article  Google Scholar 

  8. H.S. Choi, Y.H. Kim, H.K. Kim, K.-B. Kim, J. Power. Sources 560, 232702 (2023)

    Article  CAS  Google Scholar 

  9. P. Jiang, Y. Hu, G. Li, Talanta 200, 212 (2019)

    Article  CAS  PubMed  Google Scholar 

  10. Y. Song, M. He, J. Zhao, W. Jin, Sep. Purif. Technol. 270, 118722 (2021)

    Article  CAS  Google Scholar 

  11. Y. Li, T. Fan, W. Cui, X. Wang, S. Ramakrishna, Y. Long, Sep. Purif. Technol. 306, 122586 (2023)

    Article  CAS  Google Scholar 

  12. J. Shen, Z. Lei, C. Wang, Chem. Eng. J. 447, 137503 (2022)

    Article  CAS  Google Scholar 

  13. M. Cao, Z. Zhuang, Y. Liu, Z. Zhang, J. Xuan, Q. Zhang, W. Wang, J. Colloid Interface Sci. 608, 2779 (2022)

    Article  CAS  PubMed  Google Scholar 

  14. B. Shen, B. Wang, L. Zhu, L. Jiang, Nanomaterials 10, 1636 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. N. Nagarjun, A. Dhakshinamoorthy, New J. Chem. 43, 18702 (2019)

    Article  CAS  Google Scholar 

  16. Y. Chen, C. Gong, X. Meng, X. Chen, G. Li, Q. Sun, B. Pang, Q. Zhang, J. Feng, L. Yu, J. Alloys Compd. 920, 165437 (2022)

    Article  CAS  Google Scholar 

  17. F. Kümbetlioğlu, K. O. Oskay, Z. Çıplak, and A. Ates, ACS Omega (2023).

  18. L. Hu, L. Chen, X. Peng, J. Zhang, X. Mo, Y. Liu, Z. Yan, Microporous Mesoporous Mater. 299, 110123 (2020)

    Article  CAS  Google Scholar 

  19. Y. Wan, J. Fang, Y. Wang, J. Sun, Y. Sun, X. Sun, M. Qi, W. Li, C. Li, Y. Zhou, Adv. Healthc. Mater. 10, 2101515 (2021)

    Article  CAS  Google Scholar 

  20. W. Yang, X. Shi, Y. Li, H. Pang, J. Energy Storage 26, 101018 (2019)

    Article  Google Scholar 

  21. H. Yang, S. Hu, H. Zhao, X. Luo, Y. Liu, C. Deng, Y. Yu, T. Hu, S. Shan, Y. Zhi, J. Hazard. Mater. 416, 126046 (2021)

    Article  CAS  PubMed  Google Scholar 

  22. Y. Zhou, S. Feng, X. Duan, W. Wu, Z. Ye, X. Dai, Y. Wang, X. Cao, J. Solid State Chem. 305, 122628 (2022)

    Article  CAS  Google Scholar 

  23. M. Homogen, Malays. J. Anal. Sci. 22, 768 (2018)

    Google Scholar 

  24. E.B. Boz, A. Taşdemir, E. Biçer, A. Yürüm, S.A. Gürsel, Int. J. Hydrog. Energy 46, 32858 (2021)

    Article  CAS  Google Scholar 

  25. W. Cai, W. Zhang, Z. Chen, Colloids Surfaces B Biointerfaces 223, 113170 (2023)

    Article  CAS  PubMed  Google Scholar 

  26. Z. Jin, H. Mei, L. Pan, H. Liu, L. Cheng, A.C.S. Sustain, Chem. Eng. 9, 4111 (2021)

    CAS  Google Scholar 

  27. G. Cui, G. Li, D. Luo, Y. Zhang, Y. Zhao, D. Wang, J. Wang, Z. Zhang, X. Wang, Z. Chen, Nano Energy 72, 104685 (2020)

    Article  CAS  Google Scholar 

  28. Y. Wu, B. Li, X. Wang, S. Yu, H. Pang, Y. Liu, X. Liu, X. Wang, Chem. Eng. J. 378, 122105 (2019)

    Article  CAS  Google Scholar 

  29. F. Ambroz, T.J. Macdonald, V. Martis, I.P. Parkin, Small Methods 2, 1800173 (2018)

    Article  Google Scholar 

  30. R. Bardestani, G.S. Patience, S. Kaliaguine, Can. J. Chem. Eng. 97, 2781 (2019)

    Article  CAS  Google Scholar 

  31. S. Sharma, P. Chand, Mater. Sci. Semicond. Process. 158, 107383 (2023)

    Article  CAS  Google Scholar 

  32. H. Fan, R. Niu, J. Duan, W. Liu, W. Shen, A.C.S. Appl, Mater. Interfaces 8, 19475 (2016)

    Article  CAS  Google Scholar 

  33. W. Xiao, H. Xia, J.Y.H. Fuh, L. Lu, J. Power. Sources 193, 935 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ayten Ateş thanks the Sivas Cumhuriyet University Research Foundation (CUBAP), which provided financial support for this project under Grant Number M-2021-803.

Author information

Authors and Affiliations

Authors

Contributions

FK helped in methodology, conceptualization, original draft preparation, and writing, review, and editing. KOO contributed to review and methodology. AA worked in supervision, review, methodology, and editing.

Corresponding author

Correspondence to Ayten Ateş.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest to declare. There is no financial interest to report. All co-authors agree with the contents of the manuscript. We confirm that the submission is not under review at any other publication and is original work.

Ethical approval

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 886 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kümbetlioğlu, F., Oskay, K.O. & Ateş, A. Preparation and characterization of Fe3O4/ZIF-8 and Fe3O4–MnO2/ZIF-8 composites. J IRAN CHEM SOC 21, 1079–1088 (2024). https://doi.org/10.1007/s13738-024-02978-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-024-02978-z

Keywords

Navigation