Skip to main content
Log in

Influence of Striker Rotation on the Process of Normal Interaction with Multilayer Barriers

  • Published:
Russian Physics Journal Aims and scope

The normal interaction of a steel striker with a composite metal-ceramic barrier is modeled numerically using the finite element method. The barrier consists of the following materials: boron carbide (B4C), aluminum, and orthotropic organoplastic. The behavior of metallic materials and ceramic B4C is described by an elastic-plastic model. The fracture criterion for metallic materials is the limiting value of the plastic strain intensity. The ceramic fracture is described using the deformation criterion accounting for different strengths in compression and tension. The behavior of the orthotropic composite is modeled as elastic-brittle, and the fracture of the organoplastic is described using the second-degree Hoffmann tensor-polynomial criterion. Numerical experiments are carried out using the software complex EFES. The model for boron carbide behavior during impact is validated. The influence of the striker rotation and arrangement of materials in the barrier on its protective properties is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Radchenko, S. P Batuev, and A. V. Radchenko, Phys. Mesomech., 25, 119–128 (2022).

    Article  Google Scholar 

  2. J. M. Krafft, J. Appl. Phys., 26, 1248–1253 (1955).

    Article  ADS  Google Scholar 

  3. W. Goldsmith, Int. J. Impact Eng., 22, 95–395 (1999).

    Article  Google Scholar 

  4. N. K. Gupta and V. Madhu, Int. J. Impact Eng., 12, 333–343 (1992).

    Article  Google Scholar 

  5. A. Manes, F. Serpellini, M. Pagani, et al., Int. J. Impact Eng., 69, 39–54 (2014).

    Article  Google Scholar 

  6. J. D. Seidt, J. M. Pereira, A. Gilat, et al., Int. J. Impact Eng., 62, 27–34 (2013).

    Article  Google Scholar 

  7. T. Børvik, M. Langseth, O. S. Hopperstad, and K. A. Malo, Int. J. Impact Eng., 22, 855–886 (1999).

    Article  Google Scholar 

  8. M. A. Iqbal, K. Senthil, V. Madhu, and N. K. Gupta, Int. J. Impact Eng., 110, 26–38 (2017).

    Article  Google Scholar 

  9. P. A. Radchenko, A. V. Radchenko, and S. P. Batuev, J. Eng. Phys. Thermophys., 95, 90–96 (2022).

    Article  Google Scholar 

  10. A. E. Kraus, E. I. Kraus, and I. I. Shabalin, J. Appl. Mech. Tech. Phys., 61, 847–854 (2020).

    Article  ADS  CAS  Google Scholar 

  11. N. V. Banichuk and S. Yu. Ivanova, Probl. Strength Plast., 77, 367–378 (2015).

    Google Scholar 

  12. N. N. Belov, N. T. Yugov, S .A. Afanas'yeva, et al., Vestn. Tomsk. Gos. Univ. Mat. Mekhanika, 3, 77–87 (2010).

    Google Scholar 

  13. V. K. Golubev and V. A. Medvedkin, Strength Mater., 33, 400–405 (2001).

    Article  Google Scholar 

  14. O. Hoffman, J. Compos. Mater., 1, 200–206 (1967).

    Article  ADS  Google Scholar 

  15. T. J. Moynihan, S.-C. Chou, and A. L. Mihalcin, Application of the Depth-of-Penetration Test Methodology to Characterize Ceramics for Personnel Protection, Defense Technical Information Center (2000).

  16. T. J. Holmquist and G. R. Johnson, Int. J. Impact Eng., 35, 742–752 (2008).

    Article  Google Scholar 

  17. D. Fernández-Fdz, R. Zaera, and J. Fernández-Sáez, Comput. Struct., 89, 2316–2324 (2011).

    Article  Google Scholar 

  18. D. E. Grady, J. Appl. Phys., 117, 165904 (2015).

    Article  ADS  Google Scholar 

  19. A. M. Molodets, A. A. Golyshev, and D. V. Shakhrai, J. Exp. Theor. Phys., 124, 469–475 (2017).

    Article  ADS  CAS  Google Scholar 

  20. A. S. Savinykh, S. V. Razorenov, I. A. Cherepanov et al., Tech. Phys., 63, 1755–1761 (2018).

    Article  CAS  Google Scholar 

  21. G. I. Kanel and V. V. Sherban, Combust., Explos. Shock Waves, 16, 93–103 (1980).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Radchenko.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radchenko, P.A., Batuev, S.P. & Radchenko, A.V. Influence of Striker Rotation on the Process of Normal Interaction with Multilayer Barriers. Russ Phys J 67, 126–132 (2024). https://doi.org/10.1007/s11182-024-03098-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-024-03098-0

Keywords

Navigation