Skip to main content
Log in

Nonlocal Yajima–Oikawa system: binary Darboux transformation, exact solutions and dynamic properties

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The Yajima–Oikawa (YO) system is an important long-wave–short-wave resonant interaction model, which can be used to describe a fascinating resonance phenomena in diverse areas, such as hydrodynamics, nonlinear optics and biophysics. In this paper, we propose a new type integrable nonlocal YO system, which can be derived from the special reduction in the two-component YO system. We show that the binary Darboux transformation is an effective method to construct not only multi-soliton solutions, but also other types of solutions for this type nonlocal integrable systems. Additionally, some novel solutions of the nonlocal YO system are obtained, and further are analyzed in detail to reveal several interesting dynamic features, such as the moving bright soliton with sudden position shift, the collision of two-breather waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No datasets were generated or utilized in this study.

References

  1. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)

    Google Scholar 

  2. Ablowitz, M.J., Musslimani, Z.H.: Integrable discrete PT-symmetric model. Phys. Rev. E 90, 032912 (2014)

    Google Scholar 

  3. Grahovski, G.G., Mustafa, J.I., Susanto, H.: On nonlocal reductions of the multi-component nonlinear Schrödinger equation on symmetric spaces. Theor. Math. Phys. 197, 1430–1450 (2018)

    Google Scholar 

  4. Song, C.Q., Xiao, D.M., Zhu, Z.N.: Solitons and dynamics for a general integrable nonlocal coupled nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 45, 13–28 (2017)

    MathSciNet  Google Scholar 

  5. Ablowitz, M.J., Luo, X.D., Musslimani, Z.H.: Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 59, 011501 (2018)

    MathSciNet  Google Scholar 

  6. Yang, B., Yang, J.K.: General rogue waves in the nonlocal PT-symmetric nonlinear Schrödinger equation. Lett. Math. Phys. 109, 945–973 (2018)

    Google Scholar 

  7. Yang, J.K.: General N-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations. Phys. Lett. A 383, 328–337 (2019)

    MathSciNet  Google Scholar 

  8. Yang, J.K.: Physically significant nonlocal nonlinear Schrödinger equation and its soliton solutions. Phys. Rev. E 98, 042202 (2018)

    MathSciNet  Google Scholar 

  9. Benney, D.J.: A general theory for interactions between short and long waves. Stud. Appl. Math. 56, 81–94 (1977)

    MathSciNet  Google Scholar 

  10. Kivshar, Y.S.: Stable vector solitons composed of bright and dark pulses. Opt. Lett. 1992(17), 1322–1324 (1992)

    Google Scholar 

  11. Chowdhury, A., Tataronis, J.A.: Long wave-short wave resonance in nonlinear negative refractive index media. Phys. Rev. Lett. 100, 153905 (2008)

    Google Scholar 

  12. Davydov, A.S.: Solitons in molecular systems. Springer, Berlin (1991)

    Google Scholar 

  13. Zakharov, V.E.: Collapse of Langmuir waves. Sov. Phys. JETP 35, 908–914 (1972)

    Google Scholar 

  14. Djordjevic, V.D., Redekopp, L.G.: On two-dimensional packets of capillary-gravity waves. J. Fluid Mech. 79, 703–714 (1977)

    MathSciNet  Google Scholar 

  15. Yajima, N., Oikawa, M.: Formation and interaction of sonic-Langmuir solitons inverse scattering method. Progr. Theor. Phys. 56, 1719–1739 (1976)

    MathSciNet  Google Scholar 

  16. Chow, W.K., Chan, N.H., Kedziora, J.D., et al.: Rogue wave modes for the long wave-short wave resonance model. J. Phys. Soc. Jpn. 82, 074001 (2013)

    Google Scholar 

  17. Wright, O.C.: Homoclinic connections of unstable plane waves of the long-wave-short-wave equations. Stud. Appl. Math. 117, 71–93 (2006)

    MathSciNet  Google Scholar 

  18. Chen, S.H., Grelu, P., Soto-Crespo, J.M.: Dark-and bright-rogue-wave solutions for media with long-wave-short-wave resonance. Phys. Rev. E 89, 011201 (2014)

    Google Scholar 

  19. Chen, S.H.: Darboux transformation and dark rogue wave states arising from two-wave resonance interaction. Phys. Lett. A 378, 1095–1098 (2014)

    Google Scholar 

  20. Ma, Y.C., Redekopp, L.G.: Some solutions pertaining to the resonant interaction of long and short waves. Phys. Fluids. 22, 1872–1876 (1979)

    MathSciNet  Google Scholar 

  21. Ma, Y.C.: The complete solution of the long-wave-short-wave resonance equations. Stud. Appl. Math. 59, 201–221 (1978)

    MathSciNet  Google Scholar 

  22. Wing, C.K., Ning, C.H., Jacob, K.D., et al.: Rogue wave modes for the long wave-short wave resonance model. J. Phys. Soc. Jpn. 82, 074001 (2013)

    Google Scholar 

  23. Kanna, T., Sakkaravarthi, K., Tamilselvan, K.: General multicomponent Yajima–Oikawa system: Painlevë analysis, soliton solutions, and energy-sharing collisions. Phys. Rev. E 88, 062921 (2013)

    Google Scholar 

  24. Chen, J., Chen, Y., Feng, B.F., et al.: Rational solutions to two-and one-dimensional multi-component Yajima–Oikawa systems. Phys. Lett A. 379, 1510–1519 (2015)

    MathSciNet  Google Scholar 

  25. Li, R.M., Geng, X.G.: A matrix Yajima–Oikawa long-wave-short-wave resonance equation, Darboux transformations and rogue wave solutions. Commun. Nonlinear Sci. Numer. Simul. 90, 105480 (2020)

    MathSciNet  Google Scholar 

  26. Rao, J.G., Malomed, B.A., Mihalache, D., He, J.S.: General higher-order breathers and rogue waves in the two-component long-wave-short-wave resonance interaction model. Stud. Appl. Math. 149, 843–878 (2022)

    MathSciNet  Google Scholar 

  27. Yin, H.M., Pan, Q., Chow, K.W.: Modeling “crossing sea state’’ wave patterns in layered and stratified fluids. Phys. Rev. Fluids 8, 014802 (2023)

    Google Scholar 

  28. Yin, H.M., Chow, K.W.: Fermi-Pasta-Ulam-Tsingou recurrence and cascading mechanism for resonant three-wave interactions. Phys. Rev. E 107, 064215 (2023)

    MathSciNet  Google Scholar 

  29. Tkeshelashvili, L., Busch, K.: Nonlinear three-wave interaction in photonic crystals. Appl. Phys. B 81, 225–229 (2005)

    Google Scholar 

  30. Nistazakis, H.E., Frantzeskakis, D.J., Kevrekidis, P.G., Malomed, B.A., Carretero-González, R.: Bright-dark soliton complexes in spinor Bose–Einstein condensates. Phys. Rev. A 77, 033612 (2008)

    Google Scholar 

  31. Haider, B., Hassan, M., Saleem, U.: Binary Darboux transformation and quasideterminant solutions of the chiral field. J. Nonlinear Math. Phy. 18, 229–321 (2011)

    MathSciNet  Google Scholar 

  32. Nimmo, J., Yilmaz, H.: Binary Darboux transformation for the Sasa-Satsuma equation. J. Phys. A: Math. Theor. 48, 425202 (2015)

    MathSciNet  Google Scholar 

  33. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: New extended Kadomtsev–Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear Dyn. 104, 1581–1594 (2021)

    Google Scholar 

  34. Li, B.Q., Ma, Y.L.: Higher-order breathers and breather interactions for the AB system in fluids. Eur. Phys. J. Plus 138, 475 (2023)

    Google Scholar 

  35. Li, B.Q., Ma, Y.L.: A ‘firewall’ effect during the rogue wave and breather interactions to the Manakov system. Nonlinear Dyn. 111, 1565–1575 (2023)

    Google Scholar 

  36. Zakharov, V.E., Ostrovsky, L.A.: Modulation instability: the beginning. Phys. D 238, 540–548 (2009)

    MathSciNet  Google Scholar 

  37. Perego, A.M., Bessin, F., Mussot, A.: Complexity of modulation instability. Phys. Rev. Res. 4, L022057 (2022)

    Google Scholar 

  38. Cheung, V.Y.Y., Yin, H.M., Li, J.H., Chow, K.W.: An envelope system with third order dispersion: ‘Unconventional’ modulation instability and Floquet analysis. Phys. Lett. A 476, 128877 (2023)

    MathSciNet  Google Scholar 

  39. Li, B.Q., Ma, Y.L.: Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrödinger equation. Appl. Math. Comput. 386, 125469 (2020)

    MathSciNet  Google Scholar 

  40. Li, B.Q., Ma, Y.L.: Hybrid rogue wave and breather solutions for a complex mKdV equation in few-cycle ultra-short pulse optics. Eur. Phys. J. Plus 137, 861 (2022)

    Google Scholar 

  41. Yang, J., Tian, H.: Nth-order smooth positon and breather-positon solutions for the generalized integrable discrete nonlinear Schrödinger equation. Nonlinear Dyn. 111, 5629–5639 (2023)

    Google Scholar 

Download references

Acknowledgements

The work of Song is supported by National Natural Science Foundation of China (Grant No. 11801367), that of Zhao is supported by Natural Science Foundation of Shanghai (Grant No. 20ZR1421900) and National Natural Science Foundation of China (Grant No. 11301331), and that of Zhu is supported by National Natural Science Foundation of China (Grant No. 12071286) and the Ministry of Economy and Competitiveness of Spain under contract PID2020-115273GB-I00 (AEI/FEDER, EU).

Author information

Authors and Affiliations

Authors

Contributions

Three authors equally contributed to writing the paper.

Corresponding author

Correspondence to Hai-qiong Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

There are no human or animal participants in this article and informed consent is not applicable.

Consent for publication

The author confirms the work described has not been published before.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, the multi-fold binary Darboux transformation for the nonlocal NLS equation (1.2) is presented. We show the Manakov equation

$$\begin{aligned}&iu_t + u_{xx} + 2\sigma (\left| u \right| ^2 + \left| v \right| ^2 )u = 0, \nonumber \\&iv_t + v_{xx} + 2\sigma (\left| u \right| ^2 + \left| v \right| ^2 )v = 0, \end{aligned}$$
(4.1)

is reduced to the nonlocal NLS equation (1.2) by taking the constraint condition \(v(x,t) = u(-x,t)\). The Lax pair of (1.2) can also get from the reduction of Lax pair of Manakov equation, which can be presented as

$$\begin{aligned}{} & {} \Phi _x=U\Phi =(-i\lambda \Lambda +Q)\Phi ,\nonumber \\{} & {} \Phi _t=V\Phi =-2i\lambda ^2\Lambda +2\lambda Q+i\Lambda (Q_x -Q^2)\Phi , \end{aligned}$$
(4.2)

where

$$\begin{aligned} Q=\left( \begin{array}{ccc} 0 &{} 0 &{} u\\ 0 &{} 0 &{} u(-x)\\ - u^* &{} - u^*(-x)&{} 0 \\ \end{array} \right) , \Lambda =\left( \begin{array}{ccc} 1&{} 0 &{} 0 \\ 0 &{}1&{}0 \\ 0&{} 0 &{} -1 \\ \end{array} \right) . \end{aligned}$$

As in Refs. [4, 31, 32], we suppose that \(\Phi _j=(\varphi _1^j,\varphi _2^j,\varphi _3^j)^T\) is the solution of spectral problem and the time evolution equation (4.2) at \(\lambda =\lambda _j\). Then, we see that \(\Psi _j=(\varphi _2^j(-x),\varphi _1^j(-x),-\varphi _3^j(-x))^T\) is the eigenfunction at \(\lambda =-\lambda _j\). Letting \(\eta _j = (\Phi _j,\Psi _j)\) and defining the function

$$\begin{aligned}&\Omega (\eta _j ,\eta _k )= \left( \begin{array}{cc} {\frac{{\Phi _j^\dag \Phi _k }}{{ \lambda _j^* \mathrm{{ - }}\lambda _k }}} &{} {\frac{{\Phi _j^\dag \Psi _k }}{{ \lambda _j^* \mathrm{{ + }}\lambda _k }}} \\ {\frac{{\Psi _j^\dag \Phi _k }}{{-\lambda _j^* \mathrm{{ - }}\lambda _k }}} &{} {\frac{{\Psi _j^\dag \Psi _k }}{{-\lambda _j^* \mathrm{{ + }}\lambda _k }}} \end{array} \right) , \qquad \Omega (\eta _j ,\Phi ) =\left( \begin{array}{c} {\frac{{\Phi _j^\dag \Phi }}{{ \lambda _j^* \mathrm{{ - }}\lambda }}} \\ {\frac{{\Psi _j^\dag \Phi }}{{-\lambda _j^* \mathrm{{ - }}\lambda }}} \end{array} \right) ,j,k=1,2,3,\ldots , \end{aligned}$$
(4.3)

we can present the following form

Theorem 4.1

The N-fold binary Darboux transformation of the nonlocal NLS equation (1.2) can be given by

$$\begin{aligned} \Phi [N] = \Phi - RW^{ - 1} \Omega , \end{aligned}$$
(4.4)

where

$$\begin{aligned} R&= \big (\begin{array}{*{20}c} \eta _1 &{} \eta _2 &{} \cdots &{} \eta _N \\ \end{array}\big )=\Bigg ( {\underbrace{ \begin{array}{cccc} \varphi _1^1 &{} \varphi _2^1(-x) \\ \varphi _2^1 &{} \varphi _1^1(-x) \\ \varphi _3^1 &{} -\varphi _3^1(-x) \end{array}}_{\eta _1}}~ {\underbrace{ \begin{array}{cccc} \varphi _1^2 &{} \varphi _2^2(-x) \\ \varphi _2^2 &{} \varphi _1^2(-x) \\ \varphi _3^2 &{} -\varphi _3^2(-x) \end{array}}_{\eta _2}} \begin{array}{c} \cdots \\ \cdots \\ \cdots \end{array} \underbrace{ \begin{array}{cccc} \varphi _1^N &{} \varphi _2^N(-x) \\ \varphi _2^N &{} \varphi _1^N(-x) \\ \varphi _3^N &{} -\varphi _3^N(-x) \end{array}}_{\eta _N} \Bigg ) \end{aligned}$$

and

$$\begin{aligned} W = \left( {\begin{array}{*{20}c} {\Omega (\eta _1 ,\eta _1 )} &{} {\Omega (\eta _1 ,\eta _2 )} &{} \cdots &{} {\Omega (\eta _1 ,\eta _N )} \\ {\Omega (\eta _2 ,\eta _1 )} &{} {\Omega (\eta _2 ,\eta _2 )} &{} \cdots &{} {\Omega (\eta _2 ,\eta _N )} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ {\Omega (\eta _N ,\eta _1 )} &{} {\Omega (\eta _N ,\eta _2 )} &{} \cdots &{} {\Omega (\eta _N ,\eta _N )} \\ \end{array}} \right) , \qquad \Omega (\eta ,\Phi ) = \left( {\begin{array}{*{20}c} {\Omega (\eta _1 ,\Phi )} \\ {\Omega (\eta _2 ,\Phi )} \\ \vdots \\ {\Omega (\eta _N ,\Phi )} \\ \end{array}} \right) . \end{aligned}$$

The relationship between the new potential and the original potential function is

$$\begin{aligned} u[N]=u+2 i \frac{\left|\begin{array}{cc} W &{} {{\textbf {a}}}_3^{\dag } \\ {{\textbf {a}}}_1 &{} 0 \end{array} \right|}{\left|W \right|}, \end{aligned}$$
(4.5)

where

$$\begin{aligned} {{\textbf {a}}}_1&=\big ( \begin{array}{ccccccc} \varphi _1^1&\varphi _2^1(-x)&\varphi _1^2&\varphi _2^2(-x)&\cdots&\varphi _1^N&\varphi _2^N(-x) \end{array} \big ),\\ {{\textbf {a}}}_3&=\big (\begin{array}{ccccccc} \varphi _3^1&-\varphi _3^1(-x)&\varphi _3^2&-\varphi _3^2(-x)&\cdots&\varphi _3^N&\varphi _3^N(-x) \end{array} \big ). \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., Zhao, Hq. & Zhu, Zn. Nonlocal Yajima–Oikawa system: binary Darboux transformation, exact solutions and dynamic properties. Z. Angew. Math. Phys. 75, 46 (2024). https://doi.org/10.1007/s00033-024-02194-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-024-02194-y

Keywords

Mathematics Subject Classification

Navigation