Skip to main content
Log in

Dioritic to granodioritic calc-alkaline magmatism in the Sierra de Comechingones southern tip, Córdoba, Argentina: tracking the Famatinian arc into the Pampean belt

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The western Argentinian sector of Gondwana has been the focus of several recent studies related to the Famatinian orogeny; however, the geologic history of arc activity in hinterland areas remains poorly understood. We present new data from the Monte Guazú Complex that reveal arc-related magmatism in the Sierras de Córdoba, which we consider part of the Famatinian hinterland. Igneous rocks comprise a diorite unit which includes an amphibole quartz-gabbro/diorite and a tonalite unit comprising amphibole- and biotite-bearing tonalites to minor granodiorites. Both units constitute a medium-K calc-alkaline series ranging in composition from metaluminous to moderately peraluminous. Trace-element signatures show Ti and Nb depletion and strong incompatible element enrichments (large-ion lithophile elements, Pb, Th, U, and light-rare earth elements) relative to normal mid-ocean ridge basalts, suggesting that they formed in an arc setting. U–Pb zircon geochronology constrains magmatism to 455–498 Ma, while weighted mean ages of 474–489 Ma are mostly synchronous with the Famatinian arc beginning. We demonstrate that fractional crystallization of mantle wedge-derived melts controlled the early magmatic evolution, while country rock assimilation and anatectic melt mixing were prevalent in evolved rock members. These results spatially extend the Late Cambrian–Late Ordovician Famatinian retro-arc to the southern Sierras de Córdoba. Our findings show that magmatism involved coeval anatexis of host rocks, conversely to previous geodynamic models. Our data have fundamental implications for Paleozoic tectonic and magmatic processes operating along the western Argentinian sector of Gondwana, demonstrating the importance of crustal reworking and the addition of mantle material in the Famatinian arc inboard sector.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All analytical data are provided in Supplemental Information.

References

  • Aceñolaza FG, Toselli A (1976) Consideraciones estratigráficas y tectónicas sobre el Paleozoico Inferior del Noroeste Argentino. Mem. 2nd Congr. Latinoam Geol Actas 2:755–763

    Google Scholar 

  • Alasino PH, Casquet C et al (2014) The evolution of a mid-crustal thermal aureole at Cerro Toro, Sierra de Famatina, NW Argentina. Lithos 190:154–172

    Google Scholar 

  • Alasino PH, Casquet C et al (2016) Mafic rocks of the Ordovician Famatinian magmatic arc (NW Argentina): new insights into the mantle contribution. GSA Bull 128(7–8):1105–1120

    CAS  Google Scholar 

  • Anderson JL, Smith DR (1995) The effects of temperature and fO2 on the Al-in-hornblende barometer. Am Mineral 80(5–6):549–559

    CAS  Google Scholar 

  • Anderson JL, Barth AP et al (2008) Thermometers and thermobarometers in granitic systems. Rev Mineral Geochem 69(1):121–142

    CAS  Google Scholar 

  • Armbruster T, Bonazzi P et al (2006) Recommended nomenclature of epidote-group minerals. Eur J Mineral 18(5):551–567

    CAS  Google Scholar 

  • Astini RA, Dávila FM (2004) Ordovician back-arc foreland and Ocloyic thrust belt development on the western Gondwana margin as a response to Precordillera terrane accretion. Tectonics. https://doi.org/10.1029/2003TC001620

    Article  Google Scholar 

  • Baldo EG, Rapela CW, et al. (2014) Geocronología de las Sierras de Córdoba: Revisión y comentarios. In: Martino RD, Guereschi AB (Eds.) Geología y Recursos Naturales de Córdoba, pp 845–868.

  • Barzola MG, Tibaldi AM et al (2021) PTt path reconstruction in a syn-deformational migmatization event along the north-central portion of Sierra de Comechingones, Córdoba, Argentina. J South Am Earth Sci 112:103534

    CAS  Google Scholar 

  • Bea F (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. J Petrol 37(3):521–552

    CAS  Google Scholar 

  • Bellos LI, Castro A et al (2015) Multi-pulse cotectic evolution and in-situ fractionation of calc-alkaline tonalite–granodiorite rocks, Sierra de Velasco batholith, Famatinian belt, Argentina. Gondwana Res 27(1):258–280

    CAS  Google Scholar 

  • Benedetto JL (2004) The allochthony of the Argentine Precordillera ten years later (1993–2003): a new paleobiogeographic test of the microcontinental model. Gondwana Res 7(4):1027–1039

    Google Scholar 

  • Boffadossi MA, Díaz-Alvarado J et al (2023) A bimodal source for the generation of tonalitic to granitic magmas in a non-subduction-related magmatic belt: An example from the Sierra Chica of Córdoba, Argentina. Lithos 452:107207

    Google Scholar 

  • Bradshaw TK (1992) The adaptation of Pearce element ratio diagrams to complex high silica systems. Contrib to Mineral Petrol 109(4):450–458

    CAS  Google Scholar 

  • Brod JA, Gaspar JC et al (2001) Phlogopite and tetra-ferriphlogopite from Brazilian carbonatite complexes: petrogenetic constraints and implications for mineral-chemistry systematics. J Asian Earth Sci 19(3):265–296

    Google Scholar 

  • Casquet C, Dahlquist JA et al (2018) Review of the Cambrian Pampean orogeny of Argentina; a displaced orogen formerly attached to the Saldania Belt of South Africa? Earth-Sci Rev 177:209–225

    Google Scholar 

  • Casquet C, Alasino P et al (2021) The Faja Eruptiva of the Eastern Puna and the Sierra de Calalaste, NW Argentina: U-Pb zircon chronology of the early Famatinan orogeny. J Iber Geol 47:15–37

    Google Scholar 

  • Cawood PA (2005) Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Sci Rev 69(3–4):249–279

    Google Scholar 

  • Christiansen R, Morosini A et al (2019) 3D litho-constrained inversion model of southern Sierra Grande de San Luis: new insights into the Famatinian tectonic setting. Tectonophysics 756:1–24

    Google Scholar 

  • Cornet J, Laurent O et al (2022) Reworking subducted sediments in arc magmas and the isotopic diversity of the continental crust: The case of the Ordovician Famatinian crustal section, Argetina. Earth Planet Sci Lett 595:117706

    CAS  Google Scholar 

  • Cristofolini EA, Otamendi JE et al (2012) Detrital zircon U-Pb ages of metasedimentary rocks from Sierra de Valle Fértil: entrapment of Middle and Late Cambrian marine successions in the deep roots of the Early Ordovician Famatinian arc. J South Am Earth Sci 37:77–94

    CAS  Google Scholar 

  • Cristofolini E, Barzola M et al (2017) Caracterización petrológica y geoquímica de las rocas plutónicas de la Sierra de La Aguada, Provincia de San Luis, Argentina: Implicaciones genéticas con el arco magmático Famatiniano. Estud Geol 73(1):e065

    Google Scholar 

  • Dahlquist JA, Rapela CW et al (2012) Age and magmatic evolution of the Famatinian granitic rocks of Sierra de Ancasti, Sierras Pampeanas, NW Argentina. J South Am Earth Sci 34:10–25

    CAS  Google Scholar 

  • Davidson J, Turner S et al (2013) Dy/Dy*: variations arising from mantle sources and petrogenetic processes. J Petrol 54(3):525–537

    CAS  Google Scholar 

  • Demartis M, Jung S et al (2017) Famatinian inner arc: Petrographical observations and geochronological constraints on pegmatites and leucogranites of the Comechingones pegmatitic field (Sierras de Córdoba, Argentina). J South Am Earth Sci 79:239–253

    CAS  Google Scholar 

  • Drobe M, de Luchi ML et al (2011) Geodynamic evolution of the eastern Sierras Pampeanas (central Argentina) based on geochemical, Sm–Nd, Pb–Pb and SHRIMP data. Int J Earth Sci 100:631–657

    CAS  Google Scholar 

  • Ducea MN, Otamendi JE et al (2010) Timing constraints on building an intermediate plutonic arc crustal section: U-Pb zircon geochronology of the Sierra Valle Fértil–La Huerta, Famatinian Arc, Argentina. Tectonics. https://doi.org/10.1029/2009TC002615

    Article  Google Scholar 

  • Ducea MN, Bergantz GW et al (2017) Ultrafast magmatic buildup and diversification to produce continental crust during subduction. Geology 45(3):235–238

    Google Scholar 

  • Ersoy Y, Helvacı C (2010) FC–AFC–FCA and mixing modeler: a Microsoft® Excel© spreadsheet program for modeling geochemical differentiation of magma by crystal fractionation, crustal assimilation and mixing. Comput Geosci 36(3):383–390

    CAS  Google Scholar 

  • Escayola MP, Pimentel MM, Armstrong R (2007) Neoproterozoic backarc basin: sensitive high-resolution ion microprobe U-Pb and Sm-Nd isotopic evidence from the Eastern Pampean Ranges. Argentina Geology 35(6):495–498

    Google Scholar 

  • Fagiano M (2007) Geología y petrología del basamento cristalino de Las Albahacas, sur de las sierras de comechingones, Córdoba. PhD thesis, unpublished, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina, p 380

  • Fagiano M, Nullo F, Otamendi J (2005) Evolución estructural del Complejo Monte Guazú, sur de la Sierra de Comechingones, Córdoba. Mem. 16th Congr. Geol Arg Actas 4:673–680

    Google Scholar 

  • Frost BR, Frost CD (2008) A geochemical classification for feldspathic igneous rocks. J Petrol 49(11):1955–1969

    CAS  Google Scholar 

  • Frost BR, Barnes CG et al (2001) A geochemical classification for granitic rocks. J Petrol 42(11):2033–2048

    CAS  Google Scholar 

  • García-Moreno O, Castro A et al (2006) Dissolution of tonalitic enclaves in ascending hydrous granitic magmas: an experimental study. Lithos 89:245–258

    Google Scholar 

  • Gromet LP, Simpson C (2000) Cambrian orogeny in the Sierras Pampeanas, Argentina: ridge subduction or continental collision. Geol Soc Am Abstracts with Programs 32:A-505

    Google Scholar 

  • Guereschi AB, Martino RD (2008) Field and textural evidence of two migmatization events in the Sierras de Córdoba, Argentina. Gondwana Res 13(2):176–188

    CAS  Google Scholar 

  • Guereschi AB, Martino RD (2014). Las migmatitas de las Sierras de Córdoba. In: Martino RD, Guereschi AB (Eds.) Geología y Recursos Naturales de Córdoba, pp 67–94.

  • Guereschi AB, Martino RD (2021) Mineral chemistry and deformation in a temperature gradient in the Sierras Pampeanas of Córdoba (Argentina): The Chicamtoltina Tonalite-Trondhjemite Orthogneiss. J South Am Earth Sci 108:103172

    CAS  Google Scholar 

  • Gündüz M, Asan K (2021) PetroGram: An excel-based petrology program for modeling of magmatic processes. Geosci Front 12(1):81–92

    Google Scholar 

  • Hawkesworth CJ, Dhuime B et al (2010) The generation and evolution of the continental crust. J Geol Soc 167(2):229–248

    CAS  Google Scholar 

  • Heredia N, García-Sansegundo J et al (2016) Evolución Geodinámica de los Andes argentino–chilenos y la Península Antártica durante el Neoproterozoico tardío y el Paleozoico. Trabajos De Geología 36:237–278

    Google Scholar 

  • Heredia N, García-Sansegundo J, et al. (2018) The Pre-Andean phases of construction of the Southern Andes basement in Neoproterozoic–Paleozoic times. In: Folguera A, Contreras-Reyes E, Heredia N, et al. (Eds.) The evolution of the Chilean-Argentinean Andes, pp. 111–132.

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90(3):297–314

    CAS  Google Scholar 

  • Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib to Mineral Petrol 116:433–447

    CAS  Google Scholar 

  • Iannizzotto NF, Rapela CW et al (2013) The Sierra Norte-Ambargasta batholith: Late Ediacaran-Early Cambrian magmatism associated with Pampean transpressional tectonics. J South Am Earth Sci 42:127–143

    CAS  Google Scholar 

  • Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8(5):523–548

    CAS  Google Scholar 

  • Kelemen PB, Hanghøj K, Greene AR (2003) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry 3. Elsevier-Pergamon, Oxford, pp 596–659

    Google Scholar 

  • Kowallis BJ, Christiansen EH et al (2022) Variation of Fe, Al, and F Substitution in Titanite (Sphene). Geosci 12(6):229

    CAS  Google Scholar 

  • Kraemer PE, Escayola MP, Martino RD (1995) Hipótesis sobre la evolución tectónica neoproterozoica de las Sierras Pampeanas de Córdoba (30 40’-32 40’). Argentina Rev Asoc Geol Argent 50(1–4):47–59

    Google Scholar 

  • Larrovere MA, de los Hoyos CR et al (2011) High T/P evolution and metamorphic ages of the migmatitic basement of northern Sierras Pampeanas, Argentina: characterization of a mid-crustal segment of the Famatinian belt. J South Am Earth Sci 31(2–3):279–297

    CAS  Google Scholar 

  • Larrovere MA, de los Hoyos CR et al (2020) Mid-crustal deformation in a continental margin orogen: structural evolution and timing of the Famatinian Orogeny, NW Argentina. J Geol Soc 177(2):233–257

    Google Scholar 

  • Larrovere MA, Casquet C et al (2021) Extending the Pampean orogen in western Argentina: new evidence of Cambrian magmatism and metamorphism within the Ordovician Famatinian belt revealed by new SHRIMP U-Pb ages. J South Am Earth Sci 109:103222

    CAS  Google Scholar 

  • Le Maître RW, Streckeisen A et al (2002) Igneous rocks. A classification and glossary of terms: recommendations of the international union of geological sciences subcommission on the systematics of igneous rocks. Cambridge University Press, Cambridge, p 2

    Google Scholar 

  • Leake BE, Woolley AR et al (1997) Nomenclature of amphiboles; report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can Mineral 35(1):219–246

    CAS  Google Scholar 

  • Lira R, Poklepovic MF, O’Learly MS (2014) El magmatismo Cámbrico en el batolito de Sierra Norte-Ambargasta. In: Martino RD, Guereschi AB (Eds.) Geología y Recursos Naturales de Córdoba, pp 183–215.

  • López de Luchi MGL, Dopico CIM et al (2021) The Conlara Metamorphic Complex: Lithology, provenance, metamorphic constraints on the metabasic rocks, and chime monazite dating. J South Am Earth Sci 106:103065

    Google Scholar 

  • Martino RD (2003) Las fajas de deformación dúctil de las Sierras Pampeanas de Córdoba: Una reseña general. Rev Asoc Geol Argent 58:549–571

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120(3–4):223–253

    CAS  Google Scholar 

  • Middlemost EA (1994) Naming materials in the magma/igneous rock system. Earth-Sci Rev 37(3–4):215–224

    CAS  Google Scholar 

  • Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274:321–355

    CAS  Google Scholar 

  • Molina JF, Moreno JA et al (2015) Calcic amphibole thermobarometry in metamorphic and igneous rocks: new calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos 232:286–305

    CAS  Google Scholar 

  • Molina JF, Cambeses A et al (2021) A reassessment of the amphibole-plagioclase NaSi-CaAl exchange thermometer with applications to igneous and high-grade metamorphic rocks. Am Mineral 106(5):782–800

    Google Scholar 

  • Morosini A, Suárez AEO et al (2017) La Escalerilla pluton, San Luis Argentina: the orogenic and post-orogenic magmatic evolution of the famatinian cycle at Sierras de San Luis. J South Am Earth Sci 73:100–118

    CAS  Google Scholar 

  • Morosini A, Enriquez E et al (2019) Las Cañas plutonic complex: geodynamic implications during the Famatinian magmatism in northeast of Sierra de San Luis, Argentina. J South Am Earth Sci 93:313–347

    CAS  Google Scholar 

  • Morosini A, Christiansen R et al (2021) Architecture and kinematics of the Famatinian deformation in the Sierra Grande de San Luis: a record of a collisional history at 33° S latitude. J South Am Earth Sci 105:102986

    Google Scholar 

  • Mulcahy SR, Roeske SM et al (2011) Structural evolution of a composite middle to lower crustal section: the Sierra de Pie de Palo, northwest Argentina. Tectonics. https://doi.org/10.1029/2009TC002656

    Article  Google Scholar 

  • Mulcahy SR, Roeske SM et al (2014) Multiple migmatite events and cooling from granulite facies metamorphism within the Famatina arc margin of northwest Argentina. Tectonics 33(1):1–25

    Google Scholar 

  • Mutch EJF, Blundy JD et al (2016) An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer. Contrib to Mineral Petrol 171:1–27

    CAS  Google Scholar 

  • Nicholls J, Russell JK (2016) Igneous Rock Associations 20. Pearce element ratio diagrams: linking geochemical data to magmatic processes. Geosci Canada 43(2):133–146

    Google Scholar 

  • Oriolo S, Schulz B et al (2021) Early Paleozoic accretionary orogens along the Western Gondwana margin. Geosci Front 12(1):109–130

    Google Scholar 

  • Otamendi JE, Fagiano M, Nullo F (2000) Geología y evolución metamórfica del Complejo Monte Guazú, sur de la Sierra de Comechingones. Rev Asoc Geol Argent 55(3):265–279

    Google Scholar 

  • Otamendi JE, Castellarini P et al (2004) Cambrian to Devonian geologic evolution of the Sierra the Comechingones, eastern Sierras Pampeanas, Argentina: evidence for the development and exhumation of continental crust on the proto-Pacific margin of Gondwana. Gondwana Res 7(4):1143–1155

    Google Scholar 

  • Otamendi JE, Cristofolini EA et al (2014) Los granitos Devónicos del sur de la Sierra de Comechingones. In: Martino RD, Guereschi AB (eds) Geología y Recursos Naturales de Córdoba, pp 277–291

  • Otamendi JE, Barzola MG et al (2019) Petrological and geochemical variations of a turbidite-like metasedimentary sequence over the metatexite to diatexite transition within the Pampean Orogen, Argentina. Int J Earth Sci 108(4):1361–1385

    CAS  Google Scholar 

  • Otamendi JE, Cristofolini EA et al (2020) The geodynamic history of the Famatinian arc, Argentina: a record of exposed geology over the type section (latitudes 27°-33° south). J South Am Earth Sci 100:102558

    Google Scholar 

  • Pankhurst RJ, Rapela CW, Fanning CM (2000) Age and origin of coeval TTG, I-and S-type granites in the Famatinian belt of NW Argentina. Earth Environ Sci Trans R Soc Edinb 91(1–2):151–168

    Google Scholar 

  • Pearce TH (1968) A contribution to the theory of variation diagrams. Contrib Mineral Petrol 19(2):142–157

    CAS  Google Scholar 

  • Pe-Piper G, Piper DJ, Tsikouras B (2010) The late Neoproterozoic Frog Lake hornblende gabbro pluton, Avalon Terrane of Nova Scotia: evidence for the origins of appinites. Can J Earth Sci 47(2):103–120

    CAS  Google Scholar 

  • Perón Orrillo JMP, Suárez AO et al (2019) Depositional age and provenance in the San Luis Formation, Sierras Pampeanas, Argentina: evidence from detrital zircon studies. J South Am Earth Sci 94:102228

    Google Scholar 

  • Plank T (2005) Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46(5):921–944

    CAS  Google Scholar 

  • Putirka K (2016) Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. Am Mineral 101(4):841–858

    Google Scholar 

  • Radice S, Sola AM et al (2021) Constraining the timing and evolution of a long-lived tectonic boundary: an example from the Early Paleozoic. Argentina J South Am Earth Sci 107:102892

    CAS  Google Scholar 

  • Ramos VA (2018) The Famatinian orogen along the protomargin of Western Gondwana: Evidence for a nearly continuous Ordovician magmatic arc between Venezuela and Argentina. In: Folguera A, Contreras-Reyes E, et al. (Eds.) The evolution of the Chilean-Argentinean Andes, pp 133–161.

  • Ramos VA, Vujovich G et al (2010) Pampia: a large cratonic block missing in the Rodinia supercontinent. J Geodyn 50(3–4):243–255

    Google Scholar 

  • Ramos VA, Escayola M et al (2015) The late stages of the Pampean Orogeny, Córdoba (Argentina): evidence of postcollisional Early Cambrian slab break-off magmatism. J South Am Earth Sci 64:351–364

    CAS  Google Scholar 

  • Rapela CW, Pankhurst RJ et al (1998) The Pampean Orogeny of the southern proto-Andes: Cambrian continental collision in the Sierras de Córdoba. Geol Soc Spec Publ 142(1):181–217

    CAS  Google Scholar 

  • Rapela CW, Pankhurst RJ et al (2007) The Río de la Plata craton and the assembly of SW Gondwana. Earth-Sci Rev 83(1–2):49–82

    Google Scholar 

  • Rapela CW, Pankhurst RJ et al (2018) A review of the Famatinian Ordovician magmatism in southern South America: evidence of lithosphere reworking and continental subduction in the early proto-Andean margin of Gondwana. Earth Sci Rev 187:259–285

    CAS  Google Scholar 

  • Ridolfi F (2021) Amp-TB2: an updated model for calcic amphibole thermobarometry. Minerals 11(3):324

    CAS  Google Scholar 

  • Saleeby JB, Ducea MN et al (2008) Chronology of pluton emplacement and regional deformation in the southern Sierra Nevada batholith, California. Special Papers-Geol Soc Am Spec 438:397

    Google Scholar 

  • Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib to Mineral Petrol 110(2–3):304–310

    CAS  Google Scholar 

  • Schmidt MW, Poli S (2004) Magmatic epidote. Rev Mineral Geochem 56(1):399–430

    CAS  Google Scholar 

  • Schwartz JJ, Gromet LP (2004) Provenance of a late Proterozoic–early Cambrian basin, Sierras de Córdoba, Argentina. Precambrian Res 129(1–2):1–21

    CAS  Google Scholar 

  • Schwartz JJ, Gromet LP, Miro R (2008) Timing and duration of the calc-alkaline arc of the Pampean Orogeny: implications for the Late Neoproterozoic to Cambrian evolution of Western Gondwana. J Geol 116(1):39–61

    CAS  Google Scholar 

  • Scibiorski EA, Cawood PA (2022) Titanite as a petrogenetic indicator. Terra Nova 34(3):177–183

    CAS  Google Scholar 

  • Semenov IF, Weinberg R et al (2019) Prolonged Movement on a> 10-km-Wide Thrust During Early Paleozoic Orogens in the Gondwana Margin of NW Argentina. Tectonics 38(8):3210–3236

    Google Scholar 

  • Siegesmund S, Steenken A et al (2010) Time constraints on the tectonic evolution of the Eastern Sierras Pampeanas (Central Argentina). Int J Earth Sci 99:1199–1226

    CAS  Google Scholar 

  • Sims JP, Ireland TR et al (1998) U-Pb, Th-Pb and Ar-Ar geochronology from the southern Sierras Pampeanas, Argentina: implications for the Palaeozoic tectonic evolution of the western Gondwana margin. Geol Soc Lond Special Publ 142(1):259–281

    CAS  Google Scholar 

  • Steenken A, Siegesmund S et al (2006) Neoproterozoic to Early Palaeozoic events in the Sierra de San Luis: implications for the Famatinian geodynamics in the Eastern Sierras Pampeanas (Argentina). J Geol Soc 163(3):965–982

    Google Scholar 

  • Stuart-Smith PG, Camacho A et al (1999) Uranium-lead dating of felsic magmatic cycles in the southern Sierras Pampeanas, Argentina: Implications for the tectonic development of the proto-Andean Gondwana margin. In: Ramos VA, Keppie JD (eds) Laurentia-Gondwana before Pangea. Geological Society of America Special Paper

  • Tibaldi AM, Barzola MG et al (2019) Syn-deformational anatexis along the Santa Rosa river section, Argentina: feedback relation between deformation, metamorphism and melt extraction. J Struct Geol 124:151–167

    Google Scholar 

  • Tibaldi AM, Otamendi JE et al (2021) Early Cambrian multiple-sourced plutonism in the Eastern Sierras Pampeanas, Córdoba, Argentina: implications for the evolution of the early Paleozoic Gondwana margin. J South Am Earth Sci 106:103048

    CAS  Google Scholar 

  • Van Staal CR, Vujovich GI et al (2011) An Alpine-style Ordovician collision complex in the Sierra de Pie de Palo, Argentina: record of subduction of Cuyania beneath the Famatina arc. J Struct Geol 33(3):343–361

    Google Scholar 

  • Verdecchia SO, Baldo EG et al (2007) The first shelly fauna from metamorphic rocks of the Sierras Pampeanas (La Cébila Formation, Sierra de Ambato, Argentina): age and paleogeographic implications. Ameghiniana 44(2):493–498

    Google Scholar 

  • Verdecchia SO, Ramacciotti CD et al (2022) Late Famatinian (440–410 Ma) overprint of Grenvillian metamorphism in Grt-St schists from the Sierra de Maz (Argentina): Phase equilibrium modelling, geochronology, and tectonic significance. J Metamorph Geol 40(8):1347–1381

    CAS  Google Scholar 

  • Verdecchia SO, Casquet C et al (2023) Silurian inverted Barrovian-type metamorphism in the Western Sierras Pampeanas (Argentina): a case of top to bottom heating? Geol Mag 160(5):972–992

    CAS  Google Scholar 

  • Villaseca C, Barbero L, Herreros V (1998) A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. Earth Environ Sci Trans R Soc Edinb 89(2):113–119

    CAS  Google Scholar 

  • Weinberg RF, Becchio R et al (2018) Early Paleozoic accretionary orogenies in NW Argentina: growth of West Gondwana. Earth-Sci Rev 187:219–247

    Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95(1):185–187

    CAS  Google Scholar 

  • Zheng YF (2019) Subduction Zone Geochemistry. Geosci Front 10:1223–1254

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by grants PICT-2020-A-3178, PICT-2018-D-2549 and PIP 11220200103191-CONICET from the Fondo para la Investigación Científica y Tecnología, and PPI 18/C573 grant from the Universidad Nacional de Río Cuarto. Moreover, an academic mobility scholarship funded by the Asociación Universitaria Iberoamericana de Postgrado promotes this research. We thank Facundo Gonzalez, Matín Poffo, and Ezequiel Iglesias for their fieldwork contributions.

Funding

This study was supported by Fondo para la Investigación Científica y Tecnológica (11220200103191-CONICET, PICTA3178/20, PICTD2549/18); and by Secretaría de Ciencia y Técnica, Universidad Nacional de Río Cuarto (PPI18/C573).

Author information

Authors and Affiliations

Authors

Contributions

All authors have worked in research, conceptualization, data analysis, methodologies, writing, and editing.

Corresponding author

Correspondence to María P. Benito.

Ethics declarations

Conflict of interests

The authors have no conflicts of interest to declare.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benito, M.P., Tibaldi, A.M., Cristofolini, E.A. et al. Dioritic to granodioritic calc-alkaline magmatism in the Sierra de Comechingones southern tip, Córdoba, Argentina: tracking the Famatinian arc into the Pampean belt. Int J Earth Sci (Geol Rundsch) 113, 611–633 (2024). https://doi.org/10.1007/s00531-024-02385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-024-02385-y

Keywords

Navigation