Skip to main content
Log in

Comprehensive Analysis of Lead-Free Perovskite (CsSn0.5Ge0.5I3) Solar Cell: Impact of Active Layer Thickness and Defect Density

  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Here, we elucidate the influence of active layer thickness and defect density on the photovoltaic performance of lead-free CsSn0.5Ge0.5I3 perovskite solar cells (PSCs). We explained the dependence of FF and JSC on the perovskite layer thickness and defect density in terms of the extraction rate and generation rate, identifying the role of charge extraction and recombination in the operation of perovskite solar cells. Our finding revealed that when active layer thickness was varied, the best performance was achieved with a thickness of 0.4 µm, resulting in a PCE of 12.79%, open circuit voltage (VOC) of 0.807 V, FF of 77.42%, and JSC of 20.47 mA/cm2 for the CsSn0.5Ge0.5I3-based PSC. Additionally, the impact of defect density on PSC performance was assessed using the Shockley–Read–Hall recombination model. The degradation of photovoltaic performance was evident as trap density increased, with the PCE dropping from 14.38 to 5.47%. VOC experienced a significant reduction of 40%, while JSC and FF showed drops of 25.3% and 14.6%, respectively. The study emphasizes the importance of optimizing active layer thickness and minimizing trap densities to enhance the performance of lead-free PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data supporting the findings of this study are available on request from the corresponding author.

References

  1. I. Hussain, H.P. Tran, J. Jaksik, J. Moore, N. Islam, M.J. Uddin, Emergent Materials 1, 133 (2018)

  2. N. Gamal, S.H. Sedky, A. Shaker, M. Fedawy, Optik (Stuttg). 242, 167306 (2021)

    Article  ADS  Google Scholar 

  3. D. Zhou, T. Zhou, Y. Tian, X. Zhu, Y. Tu, J. Nanomater. 2018, 8148072 (2018)

  4. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

  5. P.K. Patel, Sci. Rep. 11, 3082 (2021)

  6. A. Upadhyaya, C.M.S. Negi, A. Yadav, S.K. Gupta, and A.S. Verma, Semicond. Sci. Technol. 33, (2018)

  7. S. Chaudhary, S.K. Gupta, C.M.S. Negi, Mater. Sci. Semicond. Process. 109, 104916 (2020)

    Article  Google Scholar 

  8. C.C. Stoumpos, M.G. Kanatzidis, Adv. Mater. 28, 5778 (2016)

  9. A. Kanoun, M. Benali, A.E. Merad, Sol. Energy 182, 237 (2019)

    Article  ADS  Google Scholar 

  10. W. Ke, M.G. Kanatzidis, Nat. Commun. 10, 1 (2019)

    Article  ADS  Google Scholar 

  11. M-G Ju, J. Dai, X.C. Zeng, J. Am. Chem. Soc. 139, 8038 (2017)

  12. B. Wu, Y. Zhou, G. Xing, Q. Xu, H.F. Garces, A. Solanki, Adv. Funct. Mater. 27, 1604818 (2017)

  13. I. Chung, J.H. Song, J. Im, J. Androulakis, C.D. Malliakas, H. Li, A.J. Freeman, J.T. Kenney, M.G. Kanatzidis, J. Am. Chem. Soc. 134, 8579 (2012)

    Article  Google Scholar 

  14. M. Chen, M. Ju, H.F. Garces, A.D. Carl, L.K. Ono, Z. Hawash, Y. Zhang, T. Shen, Y. Qi, R.L. Grimm, D. Paci, X.C. Zeng, Y. Zhou, N.P. Padture, Nat. Commun. 10, 16 (2019)

  15. D. Liu, M.K. Gangishetty, T.L. Kelly, J. Mater. Chem. A 2, 19873 (2014)

    Article  Google Scholar 

  16. S. Chaudhary, V. Yadav, C.M.S. Negi, S.K. Gupta, Opt. Mater. (Amst). 106, 109960 (2020)

    Article  Google Scholar 

  17. N. Sharma, S.K. Gupta, C.M.S. Negi, Superlattices Microstruct. 135, 106278 (2019)

    Article  Google Scholar 

  18. M. Abd, M. Norasikin, A. Ludin, N. Ahmad, A. Nik, R. Vincent, S. Sepeai, M. Asri, M. Teridi, M. Sukor, M. Adib, I. Kamaruzzaman, Mater. Renew. Sustain Energy 7, 1 (2018)

    Article  Google Scholar 

  19. S. Bera, A. Saha, S. Mondal, A. Biswas, S. Mallick, R. Chatterjee, S. Roy, Mater. Adv. 3, 5234 (2022)

    Article  Google Scholar 

  20. F. Wang, S. Bai, Npj Flex. Electron. 2, 1 (2018)

    Article  ADS  Google Scholar 

  21. Sentaurus, Simulation 2015 (2009)

  22. S.M. Sze, K.K. Ng, Physics of semiconductor devices (Wiley-Interscience, 2007)

  23. A. Kumar, S. Srivastava, A. Mahapatra, J. Kumar, Opt. Mater. (Amst). 117, 111193 (2021)

    Article  Google Scholar 

  24. T.R. Lenka, A.C. Soibam, S.K. Tripathy, K. Dey, P.S. Menon, M. Thway, F. Lin, A.G. Aberle, 2019 IEEE 14th Nanotechnol. Mater. Devices Conf. NMDC 2019, 7 (2019)

    Google Scholar 

  25. Md E. Islam, Md R. Islam, S. Ahmmed, M.K. Hossain, Md F. Rahman, Phys. Scr. 98, 065501 (2023)

  26. R.R.R. Kumar, S.K. Pandey, Conf. Rec. IEEE Photovolt. Spec. Conf. 801106, 1191 (2019)

    Google Scholar 

  27. H-J. Du, W-C. Wang, J-Z. Zhu, Chinese Phys. B 25, 108802 (2016)

  28. A. Pathania, R. Pandey, J. Madan, R. Sharma, in Conf. Rec. IEEE Photovolt. Spec. Conf. (Institute of Electrical and Electronics Engineers Inc., 2020), pp. 2288–2291

  29. S. Bhatt, R. Shukla, C. Pathak, S.K. Pandey, Sol. Energy 215, 473 (2021)

    Article  ADS  Google Scholar 

  30. R.R. Kumar, S.K. Pandey, Superlattices Microstruct. 135, 106273 (2019)

    Article  Google Scholar 

  31. M.I. Hossain, F.H. Alharbi, N. Tabet, Sol. Energy 120, 370 (2015)

    Article  ADS  Google Scholar 

  32. A. Yadav, A. Upadhyaya, S.K. Gupta, A.S. Verma, C.M.S. Negi, Superlattices Microstruct. 120, 788 (2018)

    Article  ADS  Google Scholar 

  33. J. Zhao, P. Wang, L. Wei, Z. Liu, X. Fang, X. Liu, D. Ren, Y. Mai, Dalt. Trans. 44, 16914 (2015)

    Article  Google Scholar 

  34. T. Hahn, S. Tscheuschner, F.J. Kahle, M. Reichenberger, S. Athanasopoulos, C. Saller, G.C. Bazan, T.Q. Nguyen, P. Strohriegl, H. Bässler, A. Köhler, Adv. Funct. Mater. 27, 1 (2017)

    Article  Google Scholar 

  35. R.L. Milot, G.E. Eperon, T. Green, H.J. Snaith, M.B. Johnston, L.M. Herz, J. Phys. Chem. Lett. 7, 4178 (2016)

    Article  Google Scholar 

  36. S.R. Cowan, A. Roy, A.J. Heeger, Phys. Rev. B - Condens. Matter Mater. Phys. 82, 245207 (2010)

    Article  ADS  Google Scholar 

  37. N.K. Elumalai, A. Uddin, Energy Environ. Sci. 9, 391 (2016)

    Article  Google Scholar 

  38. T. Tayagaki, Y. Hoshi, N. Usami, Sci. Rep. 3, 1 (2013)

    Article  Google Scholar 

  39. B. Qi, J. Wang, Phys. Chem. Chem. Phys. 15, 8972 (2013)

    Article  Google Scholar 

  40. D. Bartesaghi, I.D.C. Pérez, J. Kniepert, S. Roland, M. Turbiez, D. Neher, L.J.A. Koster, Nat. Commun. 6, 2 (2015)

    Article  Google Scholar 

  41. P. Xu, S. Chen, H.J. Xiang, X.G. Gong, S.H. Wei, Chem. Mater. 26, 6068 (2014)

    Article  Google Scholar 

  42. E.S. Parrott, R.L. Milot, T. Stergiopoulos, H.J. Snaith, M.B. Johnston, L.M. Herz, J. Phys. Chem. Lett. 7, 1321 (2016)

    Article  Google Scholar 

  43. J.M. Ball, A. Petrozza, Nat. Ener. 1, 16149 (2016)

  44. S. Yasin, T. Al Zoubi, M. Moustafa, Optik (Stuttg) 229, 166258 (2021)

    Article  ADS  Google Scholar 

  45. W. Yang, Y. Yao, C.Q. Wu, J. Appl. Phys. 117, (2015)

Download references

Author information

Authors and Affiliations

Authors

Contributions

S. Y. Carried out the simulation work and wrote the original draft of the manuscript, S. K. G. analyzed the data and arranged the resources to conduct the research; and C. M. S. N. conceptualized the idea, supervised the work and finalized the manuscript.

Corresponding author

Correspondence to C. M. S. Negi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Gupta, S.K. & Negi, C.M.S. Comprehensive Analysis of Lead-Free Perovskite (CsSn0.5Ge0.5I3) Solar Cell: Impact of Active Layer Thickness and Defect Density. Braz J Phys 54, 67 (2024). https://doi.org/10.1007/s13538-024-01444-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01444-8

Keywords

Navigation