Skip to main content

Advertisement

Log in

Plant species richness in agroforestry systems correlates to soil fertility in the humid tropic of Mexico

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Given the importance of agroforestry systems (AFS) in mitigating the impact of agriculture on the ecosystems and environment, it is critical to understand the effect of plant species richness in diverse tropical AFS on their soil properties. The objective of this study was to evaluate the role of different AFS in the conservation of plant species richness, and their effect on soil physical and chemical properties. We compared plant species richness and soil properties among six AFS by sampling 63 plots in the humid tropics. Sampled AFS include: (1) home garden (HG), (2) shade trees in plantation (ShTP), (3) live fences (LF), (4) scattered trees in paddocks (ScTP), (5) grazing under plantation (GP), and (6) slash and burn agriculture (SBA). The vegetation community in each plot was recorded by scientific name and species richness was calculated. Soil samples were collected from 0 to 10 and 10 to 20 cm depth and analyzed for pH, organic matter (OM), nitrogen (N), phosphorus (P), electrical conductivity (EC), cation exchange capacity (CEC), and texture. The highest plant species richness was found in HG (125), ShTP (121), and ScTP (89), followed by GP (56), LF (35), and SBA (4). This richness of plant species influenced the soil N (r = 0.514, P = 0.028), P (r = 0.480, P = 0.514), and OM contents (r = 0.439, P = 0.067), as well as CEC (r = 0.402, P = 0.097), EC (r = 0.153, P = 0.543), and pH (r = 0.363, P = 0.115). The highest values of pH (6.6) and P (8.14 mg kg−1) were observed in the species richest AFS, and the highest OM (10.8%), N (0.49%), and EC (0.26 µs/cm) were found in the SBA system that has been converted recently from forests. In the SBA, the high values of pH, OM, N, EC, and CEC were result of cutting and burning of plant biomass during the land-clearing process. It is concluded that AFS harbor a great diversity of plant species and can improve soil fertility, which is essential for developing sustainable agroecosystems. Further research is required to understand the effect of variation in AFS age on the overall soil health indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated in this research will be made available by the corresponding author on reasonable request.

References

  • Adame-Castro DE, Aryal DR, Villanueva-López G, López-Martínez JO, Chay-Canul AJ, Casanova-Lugo F (2020) Diurnal and seasonal variations on soil CO2 fluxes in tropical silvopastoral systems. Soil Use Manag 36:671–681

    Article  Google Scholar 

  • Alcudia-Aguilar A, van der Wal H, Suárez-Sánchez J, Martínez-Zurimendi P, Castillo-Uzcanga MM (2018) Home garden agrobiodiversity in cultural landscapes in the tropical lowlands of Tabasco, Mexico. Agrof Syst 92:1329–1339

    Article  Google Scholar 

  • Apolinário VXO, Dubeux JCB, Lira MA, Ferreira RLC, Mello ACL, Coelho DL, Muir JP, Sampaio EVSB (2016) Decomposition of arboreal legume fractions in a silvopastoral system. Crop Sci 56:1356–1363

    Article  Google Scholar 

  • Aryal DR, De Jong BH, Ochoa-Gaona S, Mendoza-Vega J, Esparza-Olguin L (2015) Successional and seasonal variation in litterfall and associated nutrient transfer in semi-evergreen tropical forests of SE Mexico. Nutr Cycl Agroecosyst 103:45–60

    Article  CAS  Google Scholar 

  • Aryal DR, Morales-Ruiz DE, López-Cruz S, Tondopó-Marroquín CN, Lara-Nucamendi A, Jiménez-Trujillo JA, Pérez-Sánchez E, Betanzos-Simón JE, Casasola-Coto F, Martínez-Salinas A, Sepúlbeda-López CJ, Ramírez-Díaz R, Arias LOMA, Guevara-Hernández F, Pinto-Ruíz R, Ibrahim M (2022) Silvopastoral systems and remnant forests enhance carbon storage in livestock-dominated landscapes in Mexico. Sci Rep 1:16769

    Article  Google Scholar 

  • Ben-Dor E, Banin A (1989) Determination of organic matter content in arid-zone soils using a simple “loss-on-ignition” method. Commun Soil Sci Plant Anal 20:1675–1695

    Article  Google Scholar 

  • Bermeo L, Ivanova, K, Pérez LM, Forés E, Pérez-Rafael S, Casas-Zapata JC, Morató J, Tzanov T (2022) Sono-enzymatically embedded antibacterial silver-lignin nanoparticles on cork filter material for water disinfection. Int J Mol Sci 23:11679

  • Bouyoucos GJ (1962) Hydrometer method for making particle size analisis de soils. Agrom Jor 54:464–465

    Google Scholar 

  • Casanova-Lugo F, Villanueva-López G, Alcudia-Aguilar A, Nahed-Toral J, Medrano-Pérez OR, Jiménez-Ferrer G, Alayón-Gamboa JA, Aryal DR (2022) Effect of tree shade on the yield of Brachiaria brizantha grass in tropical livestock production systems in Mexico. Rang Ecol Manag 80:31–38

    Article  Google Scholar 

  • Clivot H, Petitjean C, Marron N, Dallé E, Genestier J, Blaszczyk N, Santenoise P, Laflotte A, Piutti S (2020) Early effects of temperate agroforestry practices on soil organic matter and microbial enzyme activity. Plant Soil 453:89–207

    Article  Google Scholar 

  • CONAGUA (Comisión Nacional del Agua) (2023). Normales Climatológica por Estado. Search to Tabasco. Servicio Meteorológico Nacional (SMN). In 21st of September 2023: https://smn.conagua.gob.mx/es/informacion-climatologica-por-estado.

  • Delgado-Baquerizo M, Powell JR, Hamonts K, Reith F, Mele P, Brown MV, Denis PG, Ferrari BC, Fitzgerald A, Young A, Sing Bissett A (2017) Circular linkages between soil biodiversity, fertility and plant productivity are limited to topsoil at the continental scale. New Phytol 215:1186–1196

    Article  PubMed  Google Scholar 

  • Dollinger J, Jose S (2018) Agroforestry for soil health. Agrofor Syst 92:213–219

    Article  Google Scholar 

  • Eddy WC, Yang WH (2022) Improvements in soil health and soil carbon sequestration by an agroforestry for food production system. Agric Ecosyst Environ 333:107945

    Article  CAS  Google Scholar 

  • Eisenhauer N, Reich, PB, Isbell F (2012) Decomposer diversity and identity influence plant diversity effects on ecosystem functioning. Ecology 95(10):2227–2240

  • Furey GN, Tilman D (2021) Plant biodiversity and the regeneration of soil fertility. PNAS 118:e2111321118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gándara L, Pereira MM, Stup M (2019) A preliminary study of spatial distribution and plant density in a leucaena-grass planting in north Corrientes, Argentina. Trop Grass 7:143–145

    Article  Google Scholar 

  • García E (1988) Modificaciones al sistema de clasificación de Köppen. México, D.F. pp. 219

  • Glissman SR (1992) Agroecology in the tropcis: achieving a balance between land use and preservation. Environ Manag 16:681–689

    Article  Google Scholar 

  • Guo J, Feng H, Roberge G, Feng L, Pan C, McNie P, Yu Y (2022) The negative effect of Chinese fir (Cunninghamia lanceolata) monoculture plantations on soil physicochemical properties, microbial biomass, fungal communities, and enzymatic activities. For Ecol Manag 519:1–12

    Article  Google Scholar 

  • Hall SJ, Huang W, Timokhin VI, Hammel KE (2020) Lignin lags, leads, or limits the decomposition of litter and soil organic carbon. Ecology 9:1–8

    Google Scholar 

  • Hübner R, Kühnel A, Lu J, Dettmann H, Wang W, Wiesmeier M (2021) Soil carbon sequestration by agroforestry systems in China: a meta-analysis. Agr Ecosyst Environ 315:107437

    Article  Google Scholar 

  • Jezierska-Tys S, Wesolowska S, Galazka A, Joniec J, Bednarz J, Cierpiaba R (2020) Biological activity and functional diversity in soil in different cultivation systems. Int J Environ Sci Technol 17:4189–4204

    Article  CAS  Google Scholar 

  • Kolb M, Galicia L (2018) Scenarios and story lines: drivers of land use change in southern Mexico. Environ Dev Sustain 2:681–702

    Article  Google Scholar 

  • Lara-Pérez LA, Villanueva-López G, Oros-Ortega I, Aryal DR, Casanova-Lugo F, Ghimire R (2023) Seasonal variation of arthropod diversity in agroforestry systems in the humid tropics of Mexico. Arthrop Plant Int 17:1–12

    Google Scholar 

  • Laurance WF, Sayer J, Cassman KG (2014) Agricultural expansion and its impacts on tropical nature. Trend in Ecol Evol 2:107–116

    Article  Google Scholar 

  • Liu L, Zhu K, Wurzburger N, Zhang J (2020) Relationships between plant diversity and soil microbial diversity vary across taxonomic groups and spatial scales. Ecosphere 11:11–20

    Article  CAS  Google Scholar 

  • López-Hernández JC, Aryal DR, Villanueva-López G, Pinto-Ruiz R, Reyes-Sosa MB, Hernández-López A, Casanova-Lugo F, Venegas-Venegas JA, Medina-Jonapa FJ, Guevara-Hernández F, Ghimire R (2023) Carbon storage and sequestration rates in Leucaena leucocephala-based silvopasture in Southern Mexico. Agrofor Syst. https://doi.org/10.1007/s10457-023-00922-3

    Article  Google Scholar 

  • López-Santiago JG, Villanueva-López G, Casanova-Lugo F, Aryal DR, Pozo-Leyva D (2023) Livestock systems with scattered trees in paddocks reduce soil CO2 fluxes compared to grass monoculture in the humid tropics. Agrofor Syst 97(2):209–221

    Article  Google Scholar 

  • Loreaut M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76

    Article  Google Scholar 

  • Lukina NV, Tikhonova EV, Danilova MA, Bakhmet ON, Kryshen AM, Tebenkova DN, Kuznetsova AI, Smirnov VD, Braslavskaya TY, Gornov AV, Shashkov MP, Knyazeva SV, Kataev AD, Isaeva LG, Zukert NV (2019) Associations between forest vegetation and the fertility of soil organic horizons in northwestern Russia. For Ecosyst 6:1–19

    Article  Google Scholar 

  • Luo S, De Deyn GB, Jiang B, Yu S (2017) Soil biota suppress positive plant diversity effects on productivity at high but not low soil fertility. J Ecol 105:1766–1774

    Article  Google Scholar 

  • Manaye A, Tesfamariam B, Tesfaye M, Worku A, Gufi Y (2021) Tree diversity and carbon stocks in agroforestry systems in northern Ethiopia. Car Bal Manag 16:1–10

    Google Scholar 

  • Moujahid El, L, Le Roux X, Michalet S, Bellvert F, Weigelt A, Poly F (2017) Effect of plant diversity on the diversity of soil organic compounds. PLoS ONE 12:e0170494

    Article  PubMed  PubMed Central  Google Scholar 

  • Morales-Ruiz DE, Aryal DR, Pinto-Ruiz R, Guevara-Hernández F, Casanova-Lugo F, Villanueva-López G (2021) Carbon contents and fine root production in tropical silvopastoral systems. Land Degrad Dev 32:738–756

    Article  Google Scholar 

  • Nadeau MB, Sullivan TP (2015) Relationships between plant biodiversity and soil fertility in a mature tropical forest, Costa Rica. Int J for Res 732946:1–14

    Google Scholar 

  • Nair PKR, Kumar BM, Nair VD (2021) Classification of agroforestry systems BT. In: Nair PKR, Kumar BM, Nair VD (eds) An introduction to agroforestry: four decades of scientific developments. Springer, Dordrecht. https://doi.org/10.1007/978-3-030-75358-0_3

    Chapter  Google Scholar 

  • Nielsen UN, Wall DH, Six J (2015) Soil biodiversity and the environment. Annu Rev Environ Resour 40:63–90

    Article  Google Scholar 

  • Pachas ANA, Shelton HM, Lambrides CJ, Dalzell SA, Murtagh GJ (2018) Effect of tree density on competition between Leucaena leucocephala and Chloris gayana using a Nelder Wheel trial. I aboveground interactions. Crop Pasture Sci 69:419–429

    Article  Google Scholar 

  • Palma-López DJ, Jiménez-Ramírez R, Zavala-Cruz J, Bautista-Zúñiga F, Gavi-Reyes F, Palma-Cancino DY (2018) Actualización de la clasificación de suelos de Tabasco, México. Agroproductividad 12:29–35

    Google Scholar 

  • Pennington T, Sarukhán J (2005) Arboles tropicales de México. Manual para la identificación de las principales especies. Universidad Nacional Autónoma de México. p. 523. https://www.google.com.mx/books/edition/Arboles_tropicales_de_M%C3%A9xico/Uwm6MuLlnU0C?hl=es&gbpv=1&dq=inauthor:%22T.+D.+Pennington%22&printsec=frontcover

  • Perfecto I, Vandermeer J (2008) Biodiversity conservation in tropical agroecosystems: a new conservation paradigm. Ann N Y Acad Sci 1134:173–200

    Article  PubMed  Google Scholar 

  • Ponge JF, Sartori G, Garlato A, Ungaro F, Zanella A, Jabiol B, Obber S (2014) The impact of parent material, climate, soil type and vegetation on Venetian forest humus forms: A direct gradient approach. Geoderma 226:290–299

  • Rhoades JD (1982) Cation exchange capacity. In: Page AL (ed) Methods of soil analysis. Parte 2. Agronomy monograph, vol 9. ASA & SSSA, Madison, pp 149–157

    Google Scholar 

  • Rivest D, Paquette A, Moreno G, Messier C (2013) A meta-analysis reveals mostly neutral influence of scattered trees on pasture yield along with some contrasted effects depending on functional groups and rainfall conditions. Agric Ecosyst Environ 165:74–79

    Article  Google Scholar 

  • Ruíz-Álvarez O, Arteaga-Ramírez R, Vázquez-Peña MA, Ontiveros EE, López-López RC (2012) Water balance and climatic classifcation of the state of Tabasco. Mexico Univ Ciencia 28:1–14

    Google Scholar 

  • Shirima DD, Totland Ø, Moe SR (2016) The relative importance of vertical soil nutrient heterogeneity and mean and depth-specific soil nutrient availabilities for tree species richness in tropical forests and woodlands. Oecologia 3:877–888

    Article  Google Scholar 

  • Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnson CT, Sumner ME (eds.) (2007) Methods of Soil Analysis. Part 3-Chemical Methods. Soil Science Society of America Book Series. Madison WI 1264 pp.

  • Standley PC, Steyermark JA (1952) Flora of Guatemala Fieldiana: Botany 24:92–100

    Google Scholar 

  • Stöcker CM, Bamberg AL, Stumpf L, Monteiro AB, Cardoso JH, de Lima ACR (2020) Short-term soil physical quality improvements promoted by an agroforestry system. Agrofor Syst 94:2053–2064

    Article  Google Scholar 

  • Suárez LR, Salazar JCS, Casanoves F, Bieng MAN (2021) Cacao agroforestry systems improve soil fertility: comparison of soil properties between forest, cacao agroforestry systems, and pasture in the Colombian Amazon. Agric Ecosyst Environ 314:107349

    Article  Google Scholar 

  • Sun Y, Zang H, Splettstößer T, Kumar A, Xu X, Kuzyakov Y, Pausch J (2021) Plant intraspecific competition and growth stage alter carbon and nitrogen mineralization in the rhizosphere. Plant Cell Environ 44:1231–1242

    Article  CAS  PubMed  Google Scholar 

  • Torquebiau EF (2000) A renewed perspective on agroforestry concepts and classification. CR Acad Sci Paris Sci De La Vie 323:1009–1017

    CAS  Google Scholar 

  • Tuomisto H, Zuquim G, Cárdenas G (2014) Species richness and diversity along edaphic and climatic gradients in Amazonia. Ecography 37:1034–1046

    Article  Google Scholar 

  • Valenzuela-Que FG, Villanueva-López G, Alcudia-Aguilar A, Medrano-Pérez OR, Cámara-Cabrales L, Martínez-Zurimendi P, Casanova-Lugo F, Aryal DR (2022) Silvopastoral systems improve carbon stocks at livestock ranches in Tabasco, Mexico. Soil Use Manag 38:1237–1249

    Article  Google Scholar 

  • Vallejo-Quintero VE (2013) Importance and utility of microbial elements in evaluating soil quality: case studies in silvopastoral systems. Colomb for 16:83–99

    Google Scholar 

  • Villanueva-López G, Martínez-Zurimendi P, Casanova-Lugo F, Ramírez-Avilés L, Montañez-Escalante PI (2015) Carbon storage in livestock systems with and without live fences of Gliricidia sepium in the humid tropics of Mexico. Agrof Syst 89:1083–1096

    Article  Google Scholar 

  • Villanueva-Lopez G, Lara-Pérez LA, Oros-Ortega I, Ramirez-Barajas PJ, Casanova-Lugo F, Ramos-Reyes R, Aryal DR (2019) Diversity of soil macro-arthropods correlates to the richness of plant species in traditional agroforestry systems in the humid tropics of Mexico. Agric Ecosyst Environ 286:106658

    Article  Google Scholar 

  • Wang G, Zhu T, Zhou J, Yu Y, Petropoulos E, Müller C (2022) Slash-and-burn in karst regions lowers soil gross nitrogen (N) transformation rates and N-turnover. Geoderma 425:116084

    Article  CAS  Google Scholar 

  • Zavala-Cruz J, Jiménez Ramírez R, Palma-López DJ, Bautista Zúñiga F, Gavi-Reyes F (2016) Paisajes geomorfológicos: Base para el levantamiento de suelos en Tabasco, México. Ecosistemas y Recursos Agropecuarios 8:161–171

    Google Scholar 

  • Zhu X, Liu W, Chen J, Bruijnzeel LA, Mao Z, Yang X, Cardinael R, Meng F, Sidle RC, Seitz S, Nair VD, Nanko K, Zou X, Chen C, Jiang XJ (2020) Reductions in water, soil and nutrient losses and pesticide pollution in agroforestry practices: a review of evidence and processes. Plant Soil 453:45–86

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Consejo Nacional de Humanidades, Ciencias y Tecnología for financially supporting the research project and thank El Colegio de la Frontera Sur for the support with infrastructure to carry out this research.

Funding

This study was supported by the Projects No. TAB-2006-C08-43867 of the National Council of Humanities Sciences and Technologies “Ecophysiological and productivity evaluation of the historical agroforestry systems of Tabasco”, and  PRODECTI-2022-01/21 “Evaluación de sistemas silvopastoriles para transitar hacia una ganadería sostenible y climáticamente inteligente en la Cuenca del Usumacinta, Tabasco” financed by the Science and Technology Council of the State of Tabasco.

Author information

Authors and Affiliations

Authors

Contributions

GVL designed the study, collected and analysed data and prepared the draft of the manuscript, AAA collected and analysed all the data, FCL analysed the data, ORMP made map, All authors read the draft and approved the fnal manuscript.

Corresponding author

Correspondence to G. Villanueva-López.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors state that they have no confict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alcudia-Aguilar, A., Villanueva-López, G., Alayón-Gamboa, J.A. et al. Plant species richness in agroforestry systems correlates to soil fertility in the humid tropic of Mexico. Agroforest Syst 98, 891–909 (2024). https://doi.org/10.1007/s10457-024-00961-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-024-00961-4

Keywords

Navigation