Skip to main content
Log in

Spiked solutions for fractional Schrödinger systems with Sobolev critical exponent

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this article, we study the following fractional critical Schrödinger system

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^s u_i=\mu _iu_i^3+\beta u_i\sum _{j\ne i}u_j^{2}+\lambda _iu_i &{}\text { in } \ \Omega ,\\ u_i=0 &{}\text { on } \ {\mathbb {R}}^N\setminus \Omega , \end{array}\right. } \quad i=1,2,\ldots ,m, \end{aligned}$$

where \(0<s<1\), \(\mu _i>0\), coupling constant \(\beta \) satisfies either \(-\infty <\beta \le {\bar{\beta }}\) (\({\bar{\beta }}>0\) small) or \(\beta \rightarrow -\infty \), \(0<\lambda _i<\lambda _1^s(\Omega )\), where \(\lambda _1^s(\Omega )\) is the first eigenvalue of \((-\Delta )^s\) on \(\Omega \), with \(\Omega \) is a smooth bounded domain in \({\mathbb {R}}^N\) with \(N=4s\). Under some geometric assumptions on \(\Omega \), we construct solutions which concentrate and blow up at different points as \(\lambda _1,\ldots ,\lambda _m\rightarrow 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartsch, T., Wang, Z.Q.: Note on ground states of nonlinear Schrödinger systems. J. Partial Differ. Equ. 19(3), 200–207 (2006)

    Google Scholar 

  2. Bartsch, T., Wang, Z.Q., Wei, J.: Bound states for a coupled Schrödinger system. J. Fixed Point Theory Appl. 2(2), 353–367 (2007)

    Article  MathSciNet  Google Scholar 

  3. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent. Commun. Pure Appl. Math. 36(4), 437–477 (1983)

    Article  MathSciNet  Google Scholar 

  4. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  5. Capella, A., Dávila, J., Dupaigne, L., Sire, Y.: Regularity of radial extremal solutions for some non-local semilinear equations. Commun. Partial Differ. Equ. 36(8), 1353–1384 (2011)

    Article  MathSciNet  Google Scholar 

  6. Chen, Z., Zou, W.: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent. Arch. Ration. Mech. Anal. 205(2), 515–551 (2012)

    Article  MathSciNet  Google Scholar 

  7. Chen, Z., Zou, W.: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case. Calc. Var. Partial Differ. Equ. 52(1–2), 423–467 (2015)

    Article  Google Scholar 

  8. Chen, Z., Zou, W.: An optimal constant for the existence of least energy solutions of a coupled Schrödinger system. Calc. Var. Partial Differ. Equ. 48(3–4), 695–711 (2013)

    Article  Google Scholar 

  9. Chen, Z., Lin, C.S., Zou, W.: Sign-changing solutions and phase separation for an elliptic system with critical exponent. Commun. Partial Differ. Equ. 39(10), 1827–1859 (2014)

    Article  MathSciNet  Google Scholar 

  10. Chen, Z., Lin, C.S., Zou, W.: Multiple sign-changing and semi-nodal solutions for coupled Schrödinger equations. J. Differ. Equ. 255(11), 4289–4311 (2013)

    Article  Google Scholar 

  11. Chen, Z., Lin, C.S., Zou, W.: Infinitely many sign-changing and semi-nodal solutions for a nonlinear Schrödinger system. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 15(2016), 859–897

  12. Choi, W., Kim, S.: On perturbations of the fractional Yamabe problem. Calc. Var. Partial Differ. Equ., 56(1) (2017)

  13. Choi, W., Kim, S., Lee, K.A.: Asymptotic behavior of solutions for nonlinear elliptic problems with the fractional Laplacian. J. Funct. Anal. 266(11), 6531–6598 (2014)

    Article  MathSciNet  Google Scholar 

  14. Clapp, M., Pistoia, A.: Fully nontrivial solutions to elliptic systems with mixed couplings. Nonlinear Anal. 216 (2022)

  15. Dávila, J., del Pino, M., Sire, Y.: Nondegeneracy of the bubble in the critical case for nonlocal equations. Proc. Am. Math. Soc. 141(11), 3865–3870 (2013)

    Article  MathSciNet  Google Scholar 

  16. Dancer, E., Wei, J., Weth, T.: A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 27(3), 953–969 (2010)

  17. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  18. Dovetta, S., Pistoia, A.: Solutions to a cubic Schrödinger system with mixed attractive and repulsive forces in a critical regime. Math. Eng. 4(4) (2022)

  19. Guo, Y., Li, B., Pistoia, A., Yan, S.: The fractional Brézis–Nirenberg problems on lower dimensions. J. Differ. Equ. 286, 284–331 (2021)

    Article  Google Scholar 

  20. Guo, Z., Luo, S., Zou, W.: On critical systems involving fractional Laplacian. J. Math. Anal. Appl. 446(1), 681–706 (2017)

    Article  MathSciNet  Google Scholar 

  21. Lin, T.C., Wei, J.: Ground state of \(N\) coupled nonlinear Schrödinger equations in \({\mathbb{R} }^N\), \(N\le 3\). Commun. Math. Phys. 255(3), 629–653 (2005)

    Article  Google Scholar 

  22. Liu, J., Liu, X., Wang, Z.Q.: Multiple mixed states of nodal solutions for nonlinear Schrödinger systems. Calc. Var. Partial Differ. Equ. 52(3–4), 565–586 (2015)

    Article  Google Scholar 

  23. Maia, L., Montefusco, E., Pellacci, B.: Infinitely many nodal solutions for a weakly coupled nonlinear Schrödinger system. Commun. Contemp. Math. 10(5), 651–669 (2008)

    Article  MathSciNet  Google Scholar 

  24. Musso, M., Pistoia, A.: Tower of bubbles for almost critical problems in general domains. J. Math. Pures Appl. (9) 93(1), 1–40 (2010)

    Article  MathSciNet  Google Scholar 

  25. Pistoia, A., Tavares, H.: Spiked solutions for Schrödinger systems with Sobolev critical exponent: the cases of competitive and weakly cooperative interactions. J. Fixed Point Theory Appl. 19(1), 407–446 (2017)

    Article  MathSciNet  Google Scholar 

  26. Pistoia, A., Vaira, G.: Segregated solutions for nonlinear Schrodinger systems with weak interspecies forces. Commun. Partial Differ. Equ. 47(11), 2146–2179 (2022)

    Article  MathSciNet  Google Scholar 

  27. Sato, Y., Wang, Z.Q.: On the least energy sign-changing solutions for a nonlinear elliptic system. Discrete Contin. Dyn. Syst. 35(5), 2151–2164 (2015)

    Article  MathSciNet  Google Scholar 

  28. Servadei, R., Valdinoci, E.: The Brézis–Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367(1), 67–102 (2015)

    Article  Google Scholar 

  29. Sirakov, B.: Least energy solitary waves for a system of nonlinear Schrödinger equations in \({\mathbb{R} }^ N\). Commun. Math. Phys. 271(1), 199–221 (2007)

    Article  Google Scholar 

  30. Tan, J.: Positive solutions for non local elliptic problems. Discrete Contin. Dyn. Syst. 33(2), 837–859 (2013)

    Article  MathSciNet  Google Scholar 

  31. Tavares, H., Terracini, S.: Sign-changing solutions of competition-diffusion elliptic systems and optimal partition problems. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 29(2), 279–300 (2012)

  32. Wu, Y.: Ground states of a \(K\)-component critical system with linear and nonlinear couplings: the attractive case. Adv. Nonlinear Stud. 19(3), 595–623 (2019)

    Article  MathSciNet  Google Scholar 

  33. Yan, S., Yang, J., Yu, X.: Equations involving fractional Laplacian operator: compactness and application. J. Funct. Anal. 269(1), 47–79 (2015)

    Article  MathSciNet  Google Scholar 

  34. Yin, X., Zou, W.: Positive least energy solutions for \(k\)-coupled Schrödinger system with critical exponent: the higher dimension and cooperative case. J. Fixed Point Theory Appl. 24(1) (2022)

  35. Zhen, M., He, J.C., Xu, H.Y.: Critical system involving fractional Laplacian. Commun. Pure. Appl. Anal. 18(1), 237–253 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author was supported by National Nature Science Foundation of China 11971392.

Author information

Authors and Affiliations

Authors

Contributions

W. Chen and X. Huang. wrote the main manuscript text and reviewed the manuscript.

Corresponding author

Correspondence to Wenjing Chen.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we collect several technical lemmas.

Lemma 7.1

[13] Given any \(K\subseteq \Omega \subset {\mathbb {R}}^N\), there holds

$$\begin{aligned} Pw_{\delta ,\xi }:=w_{\delta ,\xi }-b_1\delta ^{s}H(x,\xi )+S_{\delta ,\xi }, \end{aligned}$$
(7.1)

with

$$\begin{aligned} \Vert S_{\delta ,\xi }\Vert _{\infty }=o(\delta ^s),\quad \left\| \frac{\partial S_{\delta ,\xi }}{\partial \delta }\right\| _{\infty }=o(\delta ^{s-1}),\quad \left\| \frac{\partial S_{\delta ,\xi }}{\partial \xi _j}\right\| _{\infty }=o(\delta ^s), \end{aligned}$$

as \(\delta \rightarrow 0\), uniformly for \(\xi \in K\), where \(b_1\) is a positive constant. Moreover,

$$\begin{aligned}&Pw_{\delta ,\xi }:=w_{\delta ,\xi }-b_1\delta ^{s}H(x,\xi )+o(\delta ^s), \end{aligned}$$
(7.2)
$$\begin{aligned}&P\psi _{\delta ,\xi }^0:=\psi _{\delta ,\xi }^0-sb_1\delta ^{s}H(x,\xi )+o(\delta ^s), \end{aligned}$$
(7.3)

and

$$\begin{aligned} P\psi _{\delta ,\xi }^j:=\psi _{\delta ,\xi }^j-b_1\delta ^{s+1}\frac{\partial H(x,\xi )}{\partial \xi }+o(\delta ^{s+1}),\ j=1,\ldots ,N, \end{aligned}$$
(7.4)

as \(\delta \rightarrow 0\), uniformly for \(\xi \in K\).

Similar to the proof of [24, Lemma A.5] or [12, Lemma 4.2], we have the following result.

Lemma 7.2

It holds

$$\begin{aligned}&\langle P \Psi ^j_i, P \Psi ^h_l\rangle _{{\mathcal {C}}}=o\left( \frac{\delta _l}{\delta _i}\right) \quad \text { if } l>i, \\&\langle P\Psi ^j_i, P\Psi ^h_i\rangle _{{\mathcal {C}}}=o(1) \quad \text {if } j\ne h, \\&\langle P\Psi ^j_i, P\Psi ^j_i\rangle _{{\mathcal {C}}}=c_j(1+o(1)) \end{aligned}$$

for some positive constants \(c_0\) and \(c_1=\cdots =c_N\).

In the same way to [25, Lemma A.2, Lemma A.4, Lemma A.5], we have the following results.

Lemma 7.3

Take \(K\subseteq \Omega \subset {\mathbb {R}}^N\). It holds

$$\begin{aligned} \int _{\Omega }w_{\delta ,\xi }^pdx= {\left\{ \begin{array}{ll} O(\delta ^{ps}), &{}\text { if } 0<p<2,\\ \alpha _{N,s}^2\omega _{N-1}\delta ^{2s}|\ln \delta |+O(\delta ^{2s}), &{}\text { if } p=2,\\ O(\delta ^{N-ps}), &{}\text { if } 2<p<4, \end{array}\right. } \end{aligned}$$

uniformly for \(\xi \in K\), where \(\omega _{0}=1\) and \(\omega _{N-1}\) denotes the measure of the unit sphere \(S^{N-1}\subset {\mathbb {R}}^N\).

Lemma 7.4

Given \(p,q>0\) and \(\eta >0\) small, we have

$$\begin{aligned} \int _{\Omega }w_{\delta _1,\xi _1}^pw_{\delta _2,\xi _2}^qdx \le O(\delta _2^{qs})\int _{\Omega }w_{\delta _1,\xi _1}^pdx+O(\delta _1^{ps})\int _{\Omega }w_{\delta _2,\xi _2}^qdx +O(\delta _1^{ps}\delta _2^{qs}), \end{aligned}$$

as \((\delta _1, \delta _2)\rightarrow (0,0)\), uniformly for all \(\xi _1, \xi _2\in \Omega \) satisfying \(|\xi _1-\xi _2|\ge 2\eta \), \(dist(\xi _1, \partial \Omega )\ge 2\eta \), \(dist(\xi _2, \partial \Omega )\ge 2\eta \).

Lemma 7.5

For \(\eta >0\) small and all \(\xi _1, \xi _2\in \Omega \) satisfying \(|\xi _1-\xi _2|\ge 2\eta \), \(dist(\xi _1, \partial \Omega )\ge 2\eta \), \(dist(\xi _2, \partial \Omega )\ge 2\eta \). It holds:

$$\begin{aligned} \left\| (Pw_{\delta _2,\xi _2})^2(P\psi ^j_{\delta _1,\xi _1})\right\| _{\frac{4}{3}}=O(\delta _1^s\delta _2^s)\ \text { for } j=0,1,\ldots ,N, \end{aligned}$$

and

$$\begin{aligned} \left\| (Pw_{\delta _1,\xi _1})(Pw_{\delta _2,\xi _2})(P\psi ^j_{\delta _1,\xi _1})\right\| _{\frac{4}{3}}=O(\delta _1^s\delta _2^s)\ \text { for } j=0,1,\ldots ,N. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Huang, X. Spiked solutions for fractional Schrödinger systems with Sobolev critical exponent. Anal.Math.Phys. 14, 19 (2024). https://doi.org/10.1007/s13324-024-00878-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-024-00878-2

Keywords

Mathematics Subject Classification

Navigation