Skip to main content
Log in

On Exact Solutions of a Multidimensional System of Elliptic Equations with Power-Law Nonlinearities

  • PARTIAL DIFFERENTIAL EQUATIONS
  • Published:
Differential Equations Aims and scope Submit manuscript

Abstract

Equations and systems of elliptic type with power-law nonlinearities are considered. Such equations are found in modeling distributed robotic formations, as well as in chemical kinetics, biology, astrophysics, and many other fields. The problem of constructing multidimensional exact solutions is studied. It is proposed to use a special type of ansatz that reduces the problem to solving systems of algebraic equations. A number of multiparameter families of new exact multidimensional solutions (both radially symmetric and anisotropic) represented by explicit formulas are obtained. Examples are given to illustrate the exact solutions found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Shahzad, M.M., Saeed., Z., Akhtar, A., Munawar, H., Yousaf, M.H., Baloach, N.K., and Hussain, F.A., Review of swarm robotics in a nutshell, Drones, 2023, vol. 7, no. 4, p. 269.

    Article  Google Scholar 

  2. Muniganti, P. and Pujol, A.O., A survey on mathematical models of swarm robotics, Conf. Pap. Workshop Phys. Agents (2010), pp. 29–30.

  3. Wei, J., Fridman, E., and Johansson, K.H., A PDE approach to deployment of mobile agents under leader relative position measurements, Automatica, 2019, vol. 106, pp. 47–53.

    Article  MathSciNet  Google Scholar 

  4. Elamvazhuthi, K. and Berman, S., Mean-field models in swarm robotics: A survey, Bioinspiration Biomimetics, 2019, vol. 15, no. 1, p. 015001.

    Article  ADS  PubMed  Google Scholar 

  5. Kosov, A.A. and Semenov, E.I., Distributed model of space exploration by two types of interacting robots and its exact solutions, J. Phys.: Conf. Ser., 2021, vol. 1847, no. 1, p. 012007.

    Google Scholar 

  6. Fujita, H., On the blowing up of solutions of the Cauchy problem for \(u_t=\Delta u+u^{1+\alpha }\), J. Fac. Sci. Univ. Tokyo. Sec. I , 1966, vol. 13, pp. 109–124.

    Google Scholar 

  7. Polyanin, A.D. and Zaitsev, V.F., Nelineinye uravneniya matematicheskoi fiziki. Ch. 2 (Nonlinear Equations of Mathematical Physics. Part 2), Moscow: Yurait, 2017.

    Google Scholar 

  8. Brezis, H. and Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 1983, vol. 34, pp. 437–477.

    Article  MathSciNet  Google Scholar 

  9. Pokhozhaev, S.I., On the Dirichlet problem for the equation \(\Delta u=u^2 \), Dokl. Akad. Nauk SSSR, 1960, vol. 134, no. 4, pp. 769–772.

    Google Scholar 

  10. Pokhozhaev, S.I., About one L.V. Ovsyannikov’s problem, Prikl. Mekh. Tekh. Fiz., 1989, no. 2, pp. 5–10.

  11. Horedt, G.P., Topology of the Lane–Emden equation, Astron. Astrophys., 1987, vol. 117, no. 1–2, pp. 117–130.

    ADS  MathSciNet  Google Scholar 

  12. Bohmer, C.G. and Harko, T., Nonlinear stability analysis of the Emden–Fowler equation, J. Nonlinear Math. Phys., 2010, vol. 17, pp. 503–516.

    Article  ADS  MathSciNet  Google Scholar 

  13. Kosov, A.A. and Semenov, E.I., On the existence of periodic solutions of one nonlinear system of fourth-order parabolic equations, Itogi Nauki Tekh. Ser. Sovr. Mat. Pril. Temat. Obzory, 2021, vol. 196, pp. 98–104.

    Google Scholar 

  14. Sharaf, K., Existence of solutions for elliptic nonlinear problems on the unit ball of \(\mathbb {R}^3\), Electron. J. Differ. Equat., 2016, vol. 229, pp. 1–9.

    MathSciNet  Google Scholar 

  15. Svirizhev, Yu.M., Nelineinye volny, dissipativnye struktury i katastrofy v ekologii (Nonlinear Waves, Dissipative Structures, and Disasters in Ecology), Moscow: Nauka, 1987.

    Google Scholar 

  16. Berezovskaya, F.S. and Karev, G.P., Bifurcations of travelling waves in population taxis models, Phys.–Usp., 1999, vol. 42, no. 9, pp. 917–929.

  17. Brezis, H., Some variational problems with lack of compactness, Proc. Symp. Pure Math., 1986, vol. 45, pp. 167–201.

    MathSciNet  Google Scholar 

  18. Turing, A.M., The chemical basis of morphogenesis, Phil. Trans. R. Soc. London, 1952, vol. 237, pp. 37–72.

    ADS  MathSciNet  Google Scholar 

  19. Maini, P.K., Benson, D.L., and Sherratt, J.A., Pattern formation in reaction-diffusion models with spatially inhomogeneous diffusion coefficients, J. Math. Appl. Med. Biol., 1992, vol. 9, pp. 197–213.

    Article  MathSciNet  Google Scholar 

  20. Lair, A.V. and Wood, A.W., Existence of entire large positive solutions of semilinear elliptic systems, J. Differ. Equat., 2000, vol. 164, pp. 380–394.

    Article  ADS  MathSciNet  Google Scholar 

  21. Bozhkov, Y. and Freire, I.L., Symmetry analysis of the bidimensional Lane–Emden systems, J. Math. Anal. Appl., 2012, vol. 388, pp. 1279–1284.

    Article  MathSciNet  Google Scholar 

  22. Polyanin, A.D., Kutepov, A.M., Vyazmin, A.V., and Kazenin, D.A., Hydrodynamics, Mass and Heat Transfer in Chemical Engineering, London–New York: Taylor & Francis, 2002.

    Google Scholar 

  23. Kaptsov, O.V., Metody integrirovaniya uravnenii s chastnymi proizvodnymi (Methods for Integrating Partial Differential Equations), Moscow: Fizmatlit, 2009.

    Google Scholar 

  24. Shmidt, A.V., Exact solutions of systems of reaction–diffusion equations, Vychislit. Tekhnol., 1998, vol. 3, no. 4, pp. 87–94.

    Google Scholar 

  25. Cherniha, R. and King, J.R., Non-linear reaction–diffusion systems with variable diffusivities: Lie symmetries, ansatze and exact solutions, J. Math. Anal. Appl., 2005, vol. 308, pp. 11–35.

    Article  MathSciNet  Google Scholar 

  26. Polyanin, A.D. and Zaitsev, V.F., Handbook of Nonlinear Differential Equations, Boca Raton: CRC Press, 2012.

    Google Scholar 

  27. Kosov, A.A. and Semenov, E.I., On exact multidimensional solutions of a nonlinear system of reaction–diffusion equations, Differ. Equations, 2018, vol. 54, no. 1, pp. 106–120.

    Article  MathSciNet  Google Scholar 

  28. Kosov, A.A. and Semenov, E.I., Multidimensional exact solutions to the reaction–diffusion system with power-law nonlinear terms, Sib. Math. J., 2017, vol. 58, no. 4, pp. 619–632.

    Article  MathSciNet  Google Scholar 

  29. Kosov, A.A., Semenov, E.I., and Tirskikh, V.V., On exact multidimensional solutions of a nonlinear system of first order partial differential equations, Izv. Irkutsk. Gos. Univ. Ser. Mat., 2019, vol. 28, pp. 53–68.

    MathSciNet  Google Scholar 

  30. Kosov, A.A. and Semenov, E.I., New exact solutions of the diffusion equation with power nonlinearity, Sib. Math. J., 2022, vol. 63, no. 6, pp. 1102–1116.

    Article  MathSciNet  Google Scholar 

  31. Kosov, A.A. and Semenov, E.I., Anisotropic solutions of a nonlinear kinetic model of elliptic type, Vestn. Yuzhno-Ural’sk. Gos. Univ. Ser. Mat. Model. Programm., 2020, vol. 13, no. 4, pp. 48–57.

    Google Scholar 

  32. Gantmakher, F.R., Teoriya matrits (Matrix Theory), Moscow: Nauka, 1988.

    Google Scholar 

  33. Kamke, E., Differentialgleichung. Lösungsmethoden und Lösungen. Bd. 1: Gewöhnliche Differentialgleichungen, Leipzig: Akademische Verlagsgesellschaft Becker & Erler, 1951. Translated under the title: Spravochnik po obyknovennym differentsial’nym uravneniyam, Moscow: Nauka, 1971.

    Google Scholar 

  34. Bellman, R., Stability Theory of Differential Equations, New York–Toronto–London: McGraw-Hill, 1953. Translated under the title: Teoriya ustoichivosti reshenii differentsial’nykh uravnenii, Moscow: Izd. Inostr. Lit., 1954.

    Google Scholar 

  35. Zaitsev, V.F. and Polyanin, A.D., Spravochnik po obyknovennym differentsial’nym uravneniyam (Handbook of Ordinary Differential Equations), Moscow: Fizmatlit, 2001.

    Google Scholar 

  36. Polyanin, A.D. and Zaitsev, V.F., Nelineinye uravneniya matematicheskoi fiziki: spravochnik (Nonlinear Equations of Mathematical Physics: A Reference Book), Moscow: Fizmatlit, 2002.

    Google Scholar 

  37. Polyanin, A.D. and Zaitsev, V.F., Nelineinye uravneniya matematicheskoi fiziki. Ch. 1 (Nonlinear Equations of Mathematical Physics. Part 1), Moscow: Yurait, 2017.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-29-0081.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Kosov or E. I. Semenov.

Additional information

Translated by V. Potapchouck

CONFLICT OF INTEREST. The authors of this work declare that they have no conflicts of interest.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosov, A.A., Semenov, E.I. On Exact Solutions of a Multidimensional System of Elliptic Equations with Power-Law Nonlinearities. Diff Equat 59, 1627–1649 (2023). https://doi.org/10.1134/S0012266123120054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012266123120054

Navigation