Skip to main content

Advertisement

Log in

Arbuscular mycorrhizae reduced arsenic induced oxidative stress by coordinating nutrient uptake and proline-glutathione levels in Cicer arietinum L. (chickpea)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Accumulation of Arsenic (As) generates oxidative stress by reducing nutrients availability in plants. Arbuscular mycorrhizal (AM) symbiosis can impart metalloid tolerance in plants by enhancing the synthesis of sulfur (S)-rich peptides (glutathione- GSH) and low-molecular-weight nitrogenous (N) osmolytes (proline- Pro). The present study, therefore investigated the efficiency of 3 AM fungal species (Rhizoglomus intraradices-Ri, Funneliformis mosseae -Fm and Claroideoglomus claroideum- Cc) in imparting As (arsenate-AsV −40 at 60 mg kg−1 and arsenite- AsIII at 5 and 10 mg kg−1) tolerance in two Cicer arietinum (chickpea) genotypes (HC 3 and C 235). As induced significantly higher negative impacts in roots than shoots, which was in accordance with proportionately higher reactive oxygen species (ROS) in the former, with AsIII more toxic than AsV. Mycorrhizal symbiosis overcame oxidative stress by providing the host plants with necessary nutrients (P, N, and S) through enhanced microbial enzyme activities (MEAs) in soil, which increased the synthesis of Pro and GSH and established a redox balance in the two genotypes. This coordination between nutrient status, Pro-GSH levels, and antioxidant defense was stronger in HC 3 than C 235 due to its higher responsiveness to the three AM species. However, Ri was most beneficial in inducing redox homeostasis, followed by Fm and Cc, since the Cicer arietinum-Ri combination displayed the maximum ability to boost antioxidant defense mechanisms and establish a coordination with Pro synthesis. Thus, the results highlighted the importance of selecting specific chickpea genotypes having an ability to establish effective mycorrhizal symbiosis for imparting As stress tolerance.

Highlights

  • AsIII induced higher oxidative stress than AsV.

  • HC 3 established more effective mycorrhizal symbiosis than C 235.

  • AM improved N and S availability to plants by enhancing MEAs in soil.

  • Enhanced nutrient concentrations led to increased Pro-GSH levels.

  • Ri was most effective in coordinating nutrient uptake and Pro-GSH levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abd-Alla MH, El-Enany AWE, Nafady NA, Khalaf DM, Morsy FM (2014) Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiol Res 169(1):49–58

    Article  CAS  PubMed  Google Scholar 

  • Aebi H (1984) [13] Catalase in vitro. In Methods Enzymol 105:121–126, Academic press

  • Ahmad A, Khan WU, Shah AA, Yasin NA, Naz S, Ali A, Batool AI (2021) Synergistic effects of nitric oxide and silicon on promoting plant growth, oxidative stress tolerance and reduction of arsenic uptake in Brassica juncea. Chemosphere 262:128384

    Article  CAS  PubMed  Google Scholar 

  • Alam MZ, Hoque MA, Ahammed GJ, Carpenter-Boggs L (2020) Effects of arbuscular mycorrhizal fungi, biochar, selenium, silica gel, and sulfur on arsenic uptake and biomass growth in Pisum sativum L. Emerg Contam 6:312–322

    Article  Google Scholar 

  • Alamri S, Siddiqui MH, Kushwaha BK, Singh VP, Ali HM (2021) Mitigation of arsenate toxicity by indole-3-acetic acid in brinjal roots: plausible association with endogenous hydrogen peroxide. J Hazard Mater 405:124336

    Article  CAS  PubMed  Google Scholar 

  • Albert B, Le Cahérec F, Niogret MF, Faes P, Avice JC, Leport L, Bouchereau A (2012) Nitrogen availability impacts oilseed rape (Brassica napus L.) plant water status and proline production efficiency under water-limited conditions. Planta 236(2):659–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen JW, Shachar-Hill Y (2009) Sulfur transfer through an arbuscular mycorrhiza. Plant Physiol 149(1):549–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alotaibi MO, Saleh AM, Sobrinho RL, Sheteiwy MS, El-Sawah AM, Mohammed AE, Elgawad HA (2021) Arbuscular mycorrhizae mitigate aluminum toxicity and regulate proline metabolism in plants grown in acidic soil. J Fungi 7(7):531

    Article  CAS  Google Scholar 

  • Amiri R, Nikbakht A, Rahimmalek M, Hosseini H (2017) Variation in the essential oil composition, antioxidant capacity, and physiological characteristics of Pelargonium graveolens L. inoculated with two species of mycorrhizal fungi under water deficit conditions. J Plant Growth Regul 36:502–515

    Article  CAS  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Shahzad B, Ashraf U, Fahad S, Hassan W, Jan S, Khan I, Saleem MF, Bajwa AA (2016) Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Environ Sci Pollut Res 23(12):11864–11875

    Article  CAS  Google Scholar 

  • Anjum NA, Gill SS, Umar S, Ahmad I, Duarte AC, Pereira E (2012) Improving growth and productivity of oleiferous Brassicas under changing environment: significance of nitrogen and sulphur nutrition, and underlying mechanisms. Sci World J, 2012. https://doi.org/10.1100/2012/657808

  • Arakawa N, Tsutsumi K, Sanceda NG, Kurata T, Inagaki C (1981) A rapid and sensitive method for the determination of ascorbic acid using 4, 7-diphenyl-l, 10-phenanthroline. Agric Biol Chem 45(5):1289–1290

    CAS  Google Scholar 

  • Arianmehr M, Karimi N, Souri Z (2022) Exogenous supplementation of Sulfur (S) and Reduced Glutathione (GSH) Alleviates Arsenic Toxicity in Shoots of Isatis cappadocica Desv and Erysimum allionii L. Environ Sci Pollut Res 29(42):64205–64214

    Article  CAS  Google Scholar 

  • Asada K (1984) Chloroplasts: formation of active oxygen and its scavenging. Methods Enzymol 105:422–429

    Article  CAS  Google Scholar 

  • Aslani Z, Hassani A, Sadaghiyani MR, Sefidkon F, Barin M (2011) Effect of two fungi species of arbuscular mycorrhizal (Glomus mosseae and Glomus intraradices) on growth, chlorophyll contents and P concentration in basil (Ocimum basilicum L.) under drought stress conditions. Iranian J Med Aromat. Plants 27(3):471–486

    Google Scholar 

  • Bano SA, Ashfaq D (2013) Role of mycorrhiza to reduce heavy metal stress. Nat Sci 2013(5):16–20

    Google Scholar 

  • Bárzana G, Aroca R, Paz JA, Chaumont F, Martinez-Ballesta MC, Carvajal M, Ruiz-Lozano JM (2012) Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Ann Bot 109(5):1009–1017

    Article  PubMed  PubMed Central  Google Scholar 

  • Bates LS, Waldren RA, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci 10:1068

    Article  PubMed  PubMed Central  Google Scholar 

  • Bender SF, Conen F, Van der Heijden MG (2015) Mycorrhizal effects on nutrient cycling, nutrient leaching, and N2O production in experimental grassland. Soil Biol Biochem 1(80):283–292

    Article  Google Scholar 

  • Benhiba L, Fouad MO, Essahibi A, Ghoulam C, Qaddoury A (2015) Arbuscular mycorrhizal symbiosis enhanced growth and antioxidant metabolism in date palm subjected to long-term drought. Trees 29:1725–1733

    Article  CAS  Google Scholar 

  • Bhargava P, Srivastava AK, Urmil S, Rai LC (2005) Phytochelatin plays a role in UV-B tolerance in N2-fixing cyanobacterium Anabaena doliolum. J Plant Physiol 162(11):1220–1225

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya S, De Sarkar N, Banerjee P, Banerjee S, Mukherjee S, Chattopadhyay D, Mukhopadhyay A(2012) Effects of arsenic toxicity on germination, seedling growth and peroxidase activity in Cicer arietinum. Int J Agric Food Sci 2(4):131–137

    Google Scholar 

  • Bhattacharyya P, Tripathy S, Kim K, Kim SH (2008) Arsenic fractions and enzyme activities in arsenic-contaminated soils by groundwater irrigation in West Bengal. Ecotoxicol Environ. Saf 71(1):149–156

    Article  CAS  PubMed  Google Scholar 

  • Bianucci E, Furlan A, del Carmen Tordable M, Hernández LE, Carpena-Ruiz RO, Castro S (2017) Antioxidant responses of peanut roots exposed to realistic groundwater doses of arsenate: Identification of glutathione S-transferase as a suitable biomarker for metalloid toxicity. Chemosphere 18:551–561

    Article  ADS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Casieri L, Gallardo K, Wipf D (2012) Transcriptional response of Medicago truncatula sulphate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress. Planta 235:1431–1447

    Article  CAS  PubMed  Google Scholar 

  • Castillo FJ, Penel C, Greppin H (1984) Peroxidase release induced by ozone in Sedum album leaves: involvement of Ca2+. Plant Physiol 74(4):846–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo FJ, Greppin H (1988) Extracellular ascorbic acid and enzyme activities related to ascorbic acid metabolism in Sedum album L. leaves after ozone exposure. Environ Exp Bot 28(3):231–238

    Article  CAS  Google Scholar 

  • Chandrakar V, Dubey A, Keshavkant S (2018) Modulation of arsenic-induced oxidative stress and protein metabolism by diphenyleneiodonium, 24-epibrassinolide and proline in Glycine max L. Acta Botanica. Croatica 77(1):51–61

    Article  CAS  Google Scholar 

  • Chen X, Li H, Chan WF, Wu C, Wu F, Wu S, Wong MH (2012) Arsenite transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenite stress. Chemosphere 89(10):1248–1254

    Article  CAS  PubMed  ADS  Google Scholar 

  • Chen W, Ye T, Sun Q, Niu T, Zhang J (2021) Arbuscular mycorrhizal fungus alters root system architecture in Camellia sinensis L. as revealed by RNA-seq analysis. Front Plant Sci 12:777357

    Article  PubMed  PubMed Central  Google Scholar 

  • Daniell TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS. Microbiol Ecol 36(2–3):203–209

    Article  CAS  PubMed  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Dave R, Tripathi RD, Dwivedi S, Tripathi P, Dixit G, Sharma YK, Trivedi PK, Corpas FJ, Barroso JB, Chakrabarty D (2013) Arsenate and arsenite exposure modulate antioxidants and amino acids in contrasting arsenic accumulating rice (Oryza sativa L.) genotypes. J Hazard Mat 262:1123–1131

    Article  CAS  Google Scholar 

  • Del Longo OT, González CA, Pastori GM, Trippi VS (1993) Antioxidant defences under hyperoxygenic and hyperosmotic conditions in leaves of two lines of maize with differential sensitivity to drought. Plant Cell Physiol 34(7):1023–1028

    Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa PAMELA, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32(1):93–101

    Article  CAS  Google Scholar 

  • Dixit G, Singh AP, Kumar A, Dwivedi S, Deeba F, Kumar S, Tripathi RD (2015) Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves. Sci Rep 5(1):16205

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Doke N (1983) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol Plant Pathol 23(3):345–357

    Article  CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104(7):1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezawa T, Smith SE, Smith FA (2002) P metabolism and transport in AM fungi. Plant Soil 244(1):221–230

    Article  CAS  Google Scholar 

  • Farias JG, Nunes ST, Sausen D, Nunes MA, Neis FA, Garlet LC, Nunes PA, Dressler VL, Schetinger MR, Rossato LV, Girotto E (2018) Agricultural contamination: effect of copper excess on physiological parameters of potato genotypes and food chain security. J Appl Bot Food Qual 91:249–259

    CAS  Google Scholar 

  • Farnese FS, Oliveira JTA, Farnese MS, Gusman GS, Silveira NM, Siman LI (2014) Uptake arsenic by plants: effects on mineral nutrition, growth and antioxidant capacity. Idesia 32(1):99–106

    Article  Google Scholar 

  • Farooq MA, Islam F, Ali B, Najeeb U, Mao B, Gill RA, Yan G, Siddique KH, Zhou W (2016) Arsenic toxicity in plants: cellular and molecular mechanisms of its transport and metabolism. Environ Exp Bot 132:42–52

    Article  CAS  Google Scholar 

  • Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G, Hodges M (2011) Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. J Exp Bot 62(4):1467–1482

    Article  CAS  PubMed  Google Scholar 

  • Gahan J, O’Sullivan O, Cotter PD, Schmalenberger A (2022) Arbuscular mycorrhiza support plant sulfur supply through organosulfur mobilizing bacteria in the hypho-and rhizosphere. Plants 11(22):3050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Ríos M, Fujita T, LaRosa PC, Locy RD, Clithero JM, Bressan RA, Csonka LN (1997) Cloning of a polycistronic cDNA from tomato encoding γ-glutamyl kinase and γ-glutamyl phosphate reductase. Proceed Nat Acad Sci 94(15):8249–54

    Article  ADS  Google Scholar 

  • Garg N, Cheema A (2021) Relative roles of Arbuscular Mycorrhizae in establishing a correlation between soil properties, carbohydrate utilization and yield in Cicer arietinum L. under As stress. Ecotoxicol Environ Saf 207:111196

    Article  CAS  PubMed  Google Scholar 

  • Genre A, Lanfranco L, Perotto S, Bonfante P (2020) Unique and common traits in mycorrhizal symbioses. Nat Rev Microbiol 18:649–660

    Article  CAS  PubMed  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84(3):489–500

    Article  Google Scholar 

  • Gupta S, Thokchom SD, Koul M, Kapoor R (2022) Arbuscular Mycorrhiza mediated mineral biofortification and arsenic toxicity mitigation in Triticum aestivum L. Plant Stress 5:100086

    Article  CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    Article  CAS  PubMed  Google Scholar 

  • Hernández LE, Sobrino-Plata J, Montero-Palmero MB, Carrasco-Gil S, Flores-Cáceres ML, Ortega-Villasante C, Escobar C (2015) Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. J Exp Bot 66:2901–2911

    Article  PubMed  Google Scholar 

  • Hildebrandt TM, Nesi AN, Araújo WL, Braun HP (2015) Amino acid catabolism in plants. Mol Plant 8(11):1563–1579

    Article  CAS  PubMed  Google Scholar 

  • Hristozkova M, Stancheva I, Geneva M, Boychinova M (2017) Comparison of several arbuscular mycorrhizal fungi and sweet marjoram (Origanum majorana L.) symbiotic associations in heavy metal polluted soil. Bulg J Agric Sci 23(3):436–442

    Google Scholar 

  • Jansa J, Bukovská P, Gryndler M (2013) Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts–or just soil free-riders? Front Plant Sci 4:134

    Article  PubMed  PubMed Central  Google Scholar 

  • Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria. J Med 54(4):287–293

    Google Scholar 

  • Imtiaz M, Tu S, Xie Z, Han D, Ashraf M, Rizwan MS (2015) Growth, V uptake, and antioxidant enzymes responses of chickpea (Cicer arietinum L.) genotypes under vanadium stress. Plant Soil 390(1):17–27

    Article  CAS  Google Scholar 

  • Islam MR, Biswas L, Nasim SM, Islam MA, Haque MA, Huda AN (2022) Physiological responses of chickpea (Cicer arietinum) against chromium toxicity. Rhizosphere 24:100600

    Article  Google Scholar 

  • Johnson NC, Wilson GW, Bowker MA, Wilson JA, Miller RM (2010) Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc Natl Acad Sci 107(5):2093–2098

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Kaiser C, Kilburn MR, Clode PL, Fuchslueger L, Koranda M, Cliff JB, Solaiman ZM, Murphy DV (2015) Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol 205(4):1537–1551

    Article  CAS  PubMed  Google Scholar 

  • Kanamori T, Konishi S, Takashashi C (1972) Inducible formation of glutamate dehydrogenase in rice plant roots by the addition of ammonia to the media. Physiol Plant 26:1–6

    Article  CAS  Google Scholar 

  • Kaur R, Prasad K (2021) Technological, processing and nutritional aspects of chickpea (Cicer arietinum)—a review. Trends Food Sci Technol 109:448–463

    Article  CAS  Google Scholar 

  • Khade SW, Adholeya A (2009) Arbuscular mycorrhizal association in plants growing on metal-contaminated and noncontaminated soils adjoining Kanpur tanneries, Uttar Pradesh, India. Water Air Soil Pollut 202(1–4):45–56

    Article  CAS  ADS  Google Scholar 

  • Khan E, Gupta M (2018) Arsenic–silicon priming of rice (Oryza sativa L.) seeds influence mineral nutrient uptake and biochemical responses through modulation of Lsi-1, Lsi-2, Lsi-6 and nutrient transporter genes. Sci Rep 8(1):1–16

    Article  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333(6044):880–882

    Article  CAS  PubMed  ADS  Google Scholar 

  • Koide RT (2010) Mycorrhizal symbiosis and plant reproduction. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 297–320

  • Krishnamoorthy R, Kim CG, Subramanian P, Kim KY, Selvakumar G, Sa TM (2015) Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration. PLoS One 10(6):1–15

    Article  Google Scholar 

  • Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC (2014) Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis. Plant Soil 374:523–537

    Article  CAS  Google Scholar 

  • Lopez-Delacalle M, Silva CJ, Mestre TC, Martinez V, Blanco-Ulate B, Rivero RM (2021) Synchronization of proline, ascorbate and oxidative stress pathways under the combination of salinity and heat in tomato plants. Environ Exp Bot 183:104351

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci 105(29):9931–9935

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Ma Q, Chadwick DR, Wu L, Jones DL (2022) Arbuscular mycorrhiza fungi colonisation stimulates uptake of inorganic nitrogen and sulphur but reduces utilisation of organic forms in tomato. Soil Biol Biochem 172:108719

    Article  CAS  Google Scholar 

  • Majumder S, Powell MA, Biswas PK, Banik P (2022) The impact of Arsenic induced stress on soil enzyme activity in different rice agroecosystems. Environ Technol Innov 26:102282

    Article  CAS  Google Scholar 

  • Marulanda A, Porcel R, Barea JM, Azcón R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Microb Ecol 54:543–552

    Article  CAS  PubMed  ADS  Google Scholar 

  • Mondal NK, Debnath P, Mishra D (2022) Impact of Inorganic Arsenic (III and V) on Growth and Development of Rice (Oryza sativa L.) with Special Emphasis on Root and Coleoptile Growth. Environ. Process 9(2):31

    CAS  Google Scholar 

  • Muehlbauer FJ, Sarker A (2017) Economic importance of chickpea: production, value, and world trade. The chickpea genome, Springer. p 5–12

  • Nahar K, Rhaman MS, Parvin K, Bardhan K, Marques DN, García-Caparrós P, Hasanuzzaman M (2022) Arsenic-induced oxidative stress and antioxidant defense in plants. Stresses 2(2):179–209

    Article  Google Scholar 

  • Nakagawara S, Sagisaka S (1984) Increase in enzyme activities related to ascorbate metabolism during cold acclimation of poplar (Populus gelrica) twigs. Plant Cell Physiol 25(6):899–906

    CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Naz H, Naz A, Ashraf S(2015) Impact of heavy metal toxicity to plant growth and nodulation in chickpea grown under heavy metal stress. Int J Res Emerg Sci Technol 2(5):248–260

    Google Scholar 

  • Nehls U, Plassard C (2018) Nitrogen and phosphate metabolism in ectomycorrhizas. New Phytol 220:1047–1058

    Article  PubMed  Google Scholar 

  • Nurzhan A, Tian H, Nuralykyzy B, He W (2022) Soil enzyme activities and enzyme activity indices in long-term arsenic-contaminated soils. Eurasian Soil Sci 55(10):1425–1435

    Article  CAS  ADS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55(1):158–161

    Article  Google Scholar 

  • Porras-Soriano A, Soriano-Martín ML, Porras-Piedra A, Azcón R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166(13):1350–1359

    Article  CAS  PubMed  Google Scholar 

  • Qin M, Zhang Q, Pan J, Jiang S, Liu Y, Bahadur A, Peng Z, Yang Y, Feng H (2020) Effect of arbuscular mycorrhizal fungi on soil enzyme activity is coupled with increased plant biomass. Eur J Soil Sci 71(1):84–92

    Article  CAS  Google Scholar 

  • Rahimi A, Jahanbin S, Salehi A, Faraji H (2016) The effect of mycorrhiza fungi on the morphological characteristics, phenolic compounds. and chlorophyll fluorescence of Borage (Borago officinails L.) under draught stress. J Iranian Plant Ecophysiol Res 49(2):407–415

    Google Scholar 

  • Raza A, Zahra N, Hafeez MB, Ahmad M, Iqbal S, Shaukat K and Ahmad G (2020) Nitrogen fixation of legumes: biology and physiology. The plant family fabaceae: biology and physiological responses to environmental stresses, Springer, Singapore. pp 43–74

  • Rena AB, Splittstoesser WE (1975) Proline dehydrogenase and pyrroline- 5-carboxylate reductase from pumpkin cotyledons. Phytochem 14(3):657–661

    Article  CAS  Google Scholar 

  • Ruiz-Sánchez M, Aroca R, Muñoz Y, Polón R, Ruiz-Lozano JM (2010) The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant Physiol 167(11):862–869

    Article  PubMed  Google Scholar 

  • Ruscitti M, Arango M, Ronco M, Beltrano J (2011) Inoculation with mycorrhizal fungi modifies proline metabolism and increases chromium tolerance in pepper plants (Capsicum annuum L.). Braz J Plant Physiol 23(1):15–25

    Article  CAS  Google Scholar 

  • Sánchez E, López-Lefebre LR, García PC, Rivero RM, Ruiz JM, Romero L (2001) Proline metabolism in response to highest nitrogen dosages in green bean plants (Phaseolus vulgaris) L. cv. Strike. J Plant Physiol 158(5):593–598

  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  CAS  PubMed  ADS  Google Scholar 

  • Sbarato VM, Sanchez HJ (2001) Analysis of arsenic pollution in groundwater aquifers by X-ray fluorescence. Appl Radiat Isot 54(5):737–740

    Article  CAS  PubMed  Google Scholar 

  • Schneider J, Stürmer SL, Guilherme LRG, de Souza Moreira FM, de Sousa, Soares CRF (2013) Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil. J Hazard Mater 262:1105–1115

    Article  CAS  PubMed  Google Scholar 

  • Schüssler A, Walker C (2010) The Glomeromycota: a species list with new families and new genera http://www.amf-phylogeny.com

  • Sharma S, Anand G, Singh N, Kapoor R (2017) Arbuscular mycorrhiza augments arsenic tolerance in wheat (Triticum aestivum L.) by strengthening antioxidant defense system and thiol metabolism. Front Plant Sci 8:906

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen F, Liao R, Ali A, Mahar A, Guo D, Li R, Xining S, Awasthi MK, Wang Q, Zhang Z (2017) Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China. Ecotoxicol Environ Saf 139:254–262

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Alamri S, Khan MN, Corpas FJ, Al-Amri AA, Alsubaie QD, Ali HM, Kalaji HM, Ahmad P (2020) Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. J Hazard Mater 398:122882

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Kushwaha BK, Singh S, Kumar V, Singh VP, Prasad SM (2017) Sulphur alters chromium (VI) toxicity in Solanum melongena seedlings: role of sulphur assimilation and sulphur-containing antioxidants. Plant Physiol Biochem 112:183–192

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Parihar P, Prasad SM (2020) Sulphur and calcium attenuate arsenic toxicity in Brassica by adjusting ascorbate–glutathione cycle and sulphur metabolism. Plant Growth Regul 91(2):221–235

    Article  CAS  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5, 5′-dithiobis (2-nitrobenzoic acid). Anal Biochem 175(2):408–413

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, New York

    Google Scholar 

  • Spagnoletti FN, Balestrasse K, Lavado RS, Giacometti R (2016) Arbuscular mycorrhiza detoxifying response against arsenic and pathogenic fungus in soybean. Ecotoxicol Environ Saf 133:47–56

    Article  CAS  PubMed  Google Scholar 

  • Spagnoletti F, Lavado RS (2015) The arbuscular mycorrhiza Rhizophagus intraradices reduces the negative effects of arsenic on soybean plants. Agronomy 5(2):188–199

    Article  Google Scholar 

  • Spagnoletti FN, Lavado RS, Giacometti R (2018) Mechanisms of arsenic toxicity and tolerance in plants. Springer; Singapore Interaction of plants and arbuscular mycorrhizal fungi in responses to arsenic stress: A collaborative tale useful to manage contaminated soils; p 239–255

  • Speir TW, Kettles HA, Parshotam A, Searle PL, Vlaar LNC (1999) Simple kinetic approach to determine the toxicity of As [V] to soil biological properties. Soil Biol Biochem 31(5):705–713

    Article  CAS  Google Scholar 

  • Srivastava S, Singh N (2014) Mitigation approach of arsenic toxicity in chickpea grown in arsenic amended soil with arsenic tolerant plant growth promoting Acinetobacter sp. Ecol. Eng. 70:146–153

    Article  Google Scholar 

  • Stamou GP, Konstadinou S, Monokrousos N, Mastrogianni A, Orfanoudakis M, Hassiotis C, Menkissoglu-Spiroudi U, Vokou D, Papatheodorou EM (2017) The effects of arbuscular mycorrhizal fungi and essential oil on soil microbial community and N-related enzymes during the fungal early colonization phase. AIMS Microbiol 3(4):938–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sujkowska-Rybkowska M (2012) Reactive oxygen species production and antioxidative defense in pea (Pisum sativum L.) root nodules after short-term aluminum treatment. Acta Physiol Plant 34(4):1387–1400

    Article  CAS  Google Scholar 

  • Sweetlove LJ, Lytovchenko A, Morgan M, Nunes-Nesi A, Taylor NL, Baxter CJ, Eickmeier I, Fernie AR (2006) Mitochondrial uncoupling protein is required for efficient photosynthesis. Proc Natl Acad Sci 103(51):19587–19592

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97

    Article  CAS  PubMed  Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1(4):301–307

    Article  CAS  Google Scholar 

  • Tabatabai MA, Bremner JM (1970) Arylsulfatase Activity of Soils. Soil Sci Soc Am J 34:225–229

    Article  CAS  Google Scholar 

  • Talukdar D (2012) An induced glutathione-deficient mutant in grass pea (Lathyrus sativus L.): modifications in plant morphology, alteration in antioxidant activities and increased sensitivity to cadmium. Biorem Biodiv Bioavail 6:75–86

    Google Scholar 

  • Talukdar D, Talukdar T (2014) RETRACTED ARTICLE: Coordinated response of sulfate transport, cysteine biosynthesis, and glutathione-mediated antioxidant defense in lentil (Lens culinaris Medik.) genotypes exposed to arsenic. Protoplasma 251:839–855

    Article  CAS  PubMed  Google Scholar 

  • Tamaki S, Frankenberger WT (1992) Environmental Biochemistry of Arsenic. In: Ware GW (eds) Reviews of environmental contamination and toxicology, Springer, New York, NY, pp 79–110

  • Tamás MJ, Sharma SK, Ibstedt S, Jacobson T, Christen P (2014) Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules 4(1):252–267

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJ (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25(4):158–165

    Article  CAS  PubMed  Google Scholar 

  • Utobo EB, Tewari L (2015) Soil enzymes as bioindicators of soil ecosystem status. Appl. Ecol. Environ. Res. 13(1):147–169

    Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151(1):59–66

    Article  CAS  Google Scholar 

  • Wang HB, He HB, Yang GD, Ye CD, Niu BH, Lin WX (2010) Effects of two species of inorganic arsenic on the nutrient physiology of rice seedlings. Acta Physiol Plant 32(2):245–251

    Article  Google Scholar 

  • Wang W, Shi J, Xie Q, Jiang Y, Yu N, Wang E (2017) Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol Plant 10:1147–1158

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Lin XG, Yin R et al. (2006) Effects of arbuscular mycorrhizal inoculation on the growth of Elsholtzia splendens and Zea mays and the activities of phosphatase and urease in a multi-metal-contaminated soil under unsterilized conditions. Appl Soil Ecol 31(1–2):110–119

    Article  Google Scholar 

  • Wang NX, Li Y, Deng XH, Miao AJ, Ji R, Yang LY (2013) Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes. Water Res 47(7):2497–2506

    Article  CAS  PubMed  Google Scholar 

  • Wyszkowska J, Wieczorek K, Kucharski J (2016) Resistance of Arylsulfatase to Contamination of Soil by Heavy Metals. Pol J Environ Stud 25(1):365–375

    Article  CAS  Google Scholar 

  • Yang Y, Dong M, Cao Y, Wang J, Tang M, Ban Y (2017) Comparisons of soil properties, enzyme activities and microbial communities in heavy metal contaminated bulk and rhizosphere soils of Robinia pseudoacacia L. in the Northern foot of Qinling Mountain. Forests 8(11):430

    Article  Google Scholar 

  • Yooyongwech S, Phaukinsang N, Cha-Um S, Supaibulwatana K (2013) Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regul 69:285–293

    Article  CAS  Google Scholar 

  • Zantua MI, Bremner JM (1975) Comparison of methods of assaying urease activity in soils. Soil Biol Biochem 7(4–5):291–295

    Article  CAS  Google Scholar 

  • Zhan F, Li B, Jiang M, Yue X, He Y, Xia Y, Wang Y (2018) Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize. Envi Sci Pollut Res 25(24):24338–24347

    Article  CAS  Google Scholar 

  • Zhang L, Feng G, Declerck S (2018) Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. ISME J 12(10):2339–2351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Hamza A, Xie Z, Hussain S, Brestic M, Tahir MA, Ulhassan Z, Yu M, Allakhverdiev SI, Shabala S (2021) Arsenic transport and interaction with plant metabolism: Clues for improving agricultural productivity and food safety. Environ Pollut 290:117987

    Article  CAS  PubMed  Google Scholar 

  • Zhou H-Y, Nian F-Z, Chen B-D, Zhu Y-G, Yue X-R, Zhang N-M et al. (2023) Synergistic Reduction of Arsenic Uptake and Alleviation of Leaf Arsenic Toxicity in Maize (Zea mays L.) by Arbuscular Mycorrhizal Fungi (AMF) and Exogenous Iron through Antioxidant Activity. J Fungi 9:677

    Article  CAS  Google Scholar 

  • Zou YN, Huang YM, Wu QS, He XH (2015) Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca2+ influxes in trifoliate orange roots under drought stress. Mycorrhiza 25(2):143–152

    Article  CAS  PubMed  Google Scholar 

  • Zscheischler J, Westra S, Van Den Hurk BJ, Seneviratne SI, Ward PJ, Pitman A, Agha Kouchak A, Bresch DN, Leonard M, Wahl T, Zhang X (2018) Future climate risk from compound events. Nat Clim Change 8(6):469–477

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the financial support from the Department of Biotechnology (DBT), Government of India (BT/PR13409/BPA/118/122/2015). The authors are grateful to Haryana Agriculture University (HAU), Hisar, Indian Agricultural Research Institute (IARI), and The Energy and Resource Institute (TERI), New Delhi for providing biological resources.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors contributed equally in the preparation of manuscript. The corresponding author (NG) designed the work plan and experimental setup. The first author (AC) conducted research experiments under direct supervision and guidance of NG.

Corresponding author

Correspondence to Neera Garg.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheema, A., Garg, N. Arbuscular mycorrhizae reduced arsenic induced oxidative stress by coordinating nutrient uptake and proline-glutathione levels in Cicer arietinum L. (chickpea). Ecotoxicology 33, 205–225 (2024). https://doi.org/10.1007/s10646-024-02739-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-024-02739-x

Keywords

Navigation