Skip to main content
Log in

New Trends in Chemical Identification Methodology

  • REVIEWS
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The main techniques, approaches, methods, and information products used in recent years for the identification of chemical compounds are summarized. The methodology used in target analysis has largely remained unchanged; only the identification criteria have undergone some adjustments. The scope of research in non-target analysis has been significantly expanded. In this case, the main problems lie in revealing candidates for identification. These versions are tested against typical criteria of target analysis. Effective search for suitable candidate compounds has become possible with the apearance of modern high-resolution chromatography–mass spectrometers and progress in informatics. The latter includes the development of algorithms and programs for processing chromatographic and mass spectrometric data; comparing them with reference values; and predicting mass spectra, retention parameters, and other quantities. Chemical databases enable the assessment of the prevalence of chemical compounds and, correspondingly, their potential as candidates for identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Milman, B.L., TrAC, Trends Anal. Chem., 2005, vol. 24, no. 6, p. 493. https://doi.org/10.1016/j.trac.2005.03.013

    Article  CAS  Google Scholar 

  2. Milman, B.L., Vvedenie v khimicheskuyu identifikatsiyu (Introduction into Chemical Identification), St. Petersburg: VVM, 2008.

  3. Milman, B.L., Chemical Identification and Its Quality Assurance, Berlin: Springer, 2011.

    Book  Google Scholar 

  4. Milman, B.L. and Zhurkovich, I.K., Anal. Kontrol’, 2020, vol. 24, no. 3, p. 164. https://doi.org/10.15826/analitika.2020.24.3.003

    Article  Google Scholar 

  5. Milman, B.L. and Zhurkovich, I.K., J. Anal. Chem., 2022, vol. 77, no. 5, p. 537.

    Article  CAS  Google Scholar 

  6. Monge, M.E., Dodds, J.N., Baker, E.S., Edison, A.S., and Fernandez, F.M., Annu. Rev. Anal. Chem., 2019, vol. 12, p. 177.

    Article  CAS  Google Scholar 

  7. Molyneux, R.J., Beck, J.J., Colegate, S.M., Edgar, J.A., Gaffield, W., Gilbert, J., Hofmann, T., McConnell, L.L., and Schieberle, P., Pure Appl. Chem., 2019, vol. 91, no. 8, p. 1417. https://doi.org/10.1515/pac-2017-1204

    Article  CAS  Google Scholar 

  8. Nash, W.J. and Dunn, W.B., TrAC, Trends Anal. Chem., 2019, vol. 120, p. 115324. https://doi.org/10.1016/j.trac.2018.11.022

    Article  CAS  Google Scholar 

  9. Place, B.J., Ulrich, E.M., Challis, J.K., Chao, A., Du, B., Favela, K., Feng, Y.L., Fisher, C.M., Gardinali, P., Hood, A., Knolhoff, A.M., McEachran, A.D., Nason, S.L., Newton, S.R., Ng, B., Nuñez, J., Peter, K.T., Phillips, A.L., Quinete, N., Renslow, R., Sobus, J.R., Sussman, E.M., Warth, B., Wickramasekara, S., and Williams, A.J., Anal. Chem., 2021, vol. 93, no. 49, p. 16289. https://doi.org/10.1021/acs.analchem.1c02660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tian, Z., Liu, F., Li, D., Fernie, A.R., and Chen, W., Comput. Struct. Biotechnol. J., 2022, vol. 20, p. 5085. https://doi.org/10.1016/j.csbj.2022.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. De Jonge, N.F., Mildau, K., Meijer, D., Louwen, J.J., Bueschl, C., Huber, F., and Van der Hooft, J.J., Metabolomics, 2022, vol. 18, no. 12, p. 103. https://doi.org/10.1007/s11306-022-01963-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cai, Y., Zhou, Z., and Zhu, Z.J., TrAC, Trends Anal. Chem., 2023, vol. 158, 116903. https://doi.org/10.1016/j.trac.2022.116903

  13. ZINC20. https://zinc20.docking.org. Accessed March 18, 2023.

  14. Reference Materials. http://www.sigmaaldrich.com/RU/en/products/analytical-chemistry/reference-materials. Accessed March 18, 2023.

  15. Sumner, L.W., Amberg, A., Barrett, D., Beale, M.H., Beger, R., Daykin, C.A., Fan, T.W.M., Fiehn, O., Goodacre, R., Griffin, J.L., Hankemeier, T., Hardy, N., Harnly, J., Higashi, R., Kopka, J., Lane, A.N., Lindon, J.C., Marriott, P., Nicholls, A.W., Reily, M.D., Thaden, J.J., and Viant, M.R., Metabolomics, 2007, vol. 3, p. 211. https://doi.org/10.1007/s11306-007-0082-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schymanski, E.L., Jeon, J., Gulde, R., Fenner, K., Ruf, M., Singer, H.P., and Hollender, J., Environ. Sci. Technol., 2014, vol. 48, no. 4, p. 2097. https://doi.org/10.1021/es5002105

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Alygizakis, N., Lestremau, F., Gago-Ferrero, P., Gil-Solsona, R., Arturi, K., Hollender, J., Schymanski, E.L., Dulio, V., Slobodnik, J., and Thomaidis, N.S., TrAC, Trends Anal. Chem., 2023, vol. 159, p. 116944. https://doi.org/10.1016/j.trac.2023.116944

    Article  CAS  Google Scholar 

  18. Methods, Method Verification and Validation. https://www.fda.gov/media/73920/download. Accessed March 19, 2023.

  19. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed. https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11312_2021.pdf. Accessed March 19, 2023.

  20. Minimum Criteria for Chromatographic–Mass Spectrometric Confirmation of the Identity of Analytes for Doping Control Purposes. http://www.wada-ama.org/sites/default/files/2023-02/td2023idcrv1.1_eng_final.pdf. Accessed March 19, 2023.

  21. Milman, B.L. and Zhurkovich, I.K., Mass Spectrom. Lett., 2018, vol. 9, no. 3, p. 73. https://doi.org/10.5478/MSL.2018.9.3.73

    Article  CAS  Google Scholar 

  22. Lehotay, S.J., Anal. Bioanal. Chem., 2022, vol. 414, no. 1, p. 287. https://doi.org/10.1007/s00216-021-03380-x

    Article  CAS  PubMed  Google Scholar 

  23. PubChem. https://pubchem.ncbi.nlm.nih.gov. Accessed March 20, 2023.

  24. Duhrkop, K., Nothias, L.F., Fleischauer, M., Reher, R., Ludwig, M., Hoffmann, M.A., Petras, D., Gerwick, W.H., Rousu, J., Dorrestein, P.C., and Bocker, S., Nat. Biotechnol., 2021, vol. 39, no. 4, p. 462. https://doi.org/10.1038/s41587-020-0740-8

    Article  CAS  PubMed  Google Scholar 

  25. Rey-Stolle, F., Dudzik, D., Gonzalez-Riano, C., Fernandez-Garcia, M., Alonso-Herranz, V., Rojo, D., Barbas, C., and Garcia, A., Anal. Chim. Acta, 2022, vol. 1210, p. 339043. https://doi.org/10.1016/j.aca.2021.339043

    Article  CAS  PubMed  Google Scholar 

  26. Caballero-Casero, N., Belova, L., Vervliet, P., Antignac, J.P., Castano, A., Debrauwer, L., Lopez, M.E., Huber, C., Klanova, J., Krauss, M., Lommen, A., Mol, H.G.J., Oberacher, H., Pardo, O., Price, E.J., Reinstadler, V., Vitale, C.M., Van Nuijs, A.L.N., and Covaci, A., TrAC, Trends Anal. Chem., 2021, vol. 136, p. 116201. https://doi.org/10.1016/j.trac.2021.116201

    Article  CAS  Google Scholar 

  27. Misra, B.B., New software tools, databases, and resources in metabolomics: updates from 2020, Metabolomics, 2021, vol. 17, no. 5, p. 49. https://doi.org/10.1007/s11306-021-01796-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Milman, B.L. and Zhurkovich, I.K., TrAC, Trends Anal. Chem., 2017, vol. 97, p. 179. https://doi.org/10.1016/j.trac.2017.09.013

    Article  CAS  Google Scholar 

  29. CAS. https://www.cas.org/about/cas-content. Accessed March 20, 2023.

  30. ChemSpider. http://www.chemspider.com. Accessed March 20, 2023.

  31. CompTox Chemistry Dashboard. https://comptox.epa.gov/dashboard. Accessed March 20, 2023.

  32. NORMAN-SLE. http://www.norman-network.com/?q=node/236. Accessed March 20, 2023.

  33. The Human Metabolome Database (HMDB). https://hmdb.ca. Accessed March 20, 2023.

  34. Sorokina, M. and Steinbeck, C., J. Cheminf., 2020, vol. 12, no. 1, p. 20. https://doi.org/10.1186/s13321-020-00424-9

    Article  CAS  Google Scholar 

  35. FooDB. https://foodb.ca/compounds. Accessed March 20, 2023.

  36. O’Shea, K. and Misra, B.B., Metabolomics, 2020, vol. 16, no. 3, p. 35. https://doi.org/10.1007/s11306-020-01657-3

    Article  CAS  Google Scholar 

  37. Banimfreg, B.H., Shamayleh, A., and Alshraideh, H., Metabolites, 2022, vol. 12, no. 10, p. 1002. https://doi.org/10.3390/metabo12101002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ludwig, M., Doctoral Dissertation, Jena: Friedrich-Schiller-Univ., 2020. http://www.db-thueringen.de/ servlets/MCRFileNodeServlet/dbt_derivate_00050369/dissludwig.pdf. Accessed March 20, 2023.

  39. Milman, B.L. and Konopelko, L.A., Fresenius’ J. Anal. Chem., 2000, vol. 367, p. 621. https://doi.org/10.1007/s002160000426

    Article  CAS  PubMed  Google Scholar 

  40. Milman, B.L. and Kovrizhnych, M.A., Fresenius’ J. Anal. Chem., 2000, vol. 367, p. 629. https://doi.org/10.1007/s002160000427

    Article  CAS  PubMed  Google Scholar 

  41. Milman, B.L., Anal. Chem., 2002, vol. 74, no. 7, p. 1484. https://doi.org/10.1021/ac010611p

    Article  CAS  PubMed  Google Scholar 

  42. Milman, B.L., J. Chem. Inf. Model., 2005, vol. 45, no. 5, p. 1153. https://doi.org/10.1021/ci049716u

    Article  CAS  PubMed  Google Scholar 

  43. Little, J.L., Cleven, C.D., and Brown, S.D., J. Am. Soc. Mass Spectrom., 2011, vol. 22, no. 2, p. 348.https://doi.org/10.1007/s13361-010-0034-3

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Little, J.L., Williams, A.J., Pshenichnov, A., and Tk-achenko, V., J. Am. Soc. Mass Spectrom., 2012, vol. 23, no. 1, p. 179. https://doi.org/10.1007/s13361-011-0265-y

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Ridder, L., Van der Hooft, J.J.J., and Verhoeven, S., Mass Spectrom., 2014, vol. 3, no. 2, p. 0033. https://doi.org/10.5702/massspectrometry.S0033

  46. Woldegebriel, M. and Vivo-Truyols, G., Anal. Chem., 2016, vol. 88, no. 19, p. 9843. https://doi.org/10.1021/acs.analchem.6b03026

    Article  CAS  PubMed  Google Scholar 

  47. Ruttkies, C., Schymanski, E.L., Wolf, S., Hollender, J., and Neumann, S., J. Cheminf., 2016, vol. 8, no. 1, p. 3. https://doi.org/10.1186/s13321-016-0115-9

    Article  CAS  Google Scholar 

  48. Blaženović, I., Kind, T., Torbašinović, H., Obrenović, S., Mehta, S.S., Tsugawa, H., Wermuth, T., Schauer, N., Jahn, M., Biedendieck, R., Jahn, D., and Fiehn, O., J. Cheminf., 2017, vol. 9, p. 32. https://doi.org/10.1186/s13321-017-0219-x

    Article  Google Scholar 

  49. McEachran, A.D., Chao, A., Al-Ghoul, H., Lowe, C., Grulke, C., Sobus, J.R., and Williams, A.J., Metabolites, 2020, vol. 10, no. 6, p. 260. https://doi.org/10.3390/metabo10060260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Milman, B.L., Ostrovidova, E.V., and Zhurkovich, I.K., J. Anal. Chem., 2021, vol. 76, p. 1477. https://doi.org/10.1134/S1061934821130086

    Article  CAS  Google Scholar 

  51. Milman, B.L. and Zhurkovich, I.K., Analitika, 2020, vol. 10, no. 6, p. 464. https://doi.org/10.22184/2227-572X.2020.10.6.464.469

    Article  Google Scholar 

  52. Milman, B.L. and Zhurkovich, I.K., Molecules, 2021, vol. 26, no. 8, p. 2394. https://doi.org/10.3390/molecules26082394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schymanski, E.L., Kondic, T., Neumann, S., Thiessen, P.A., Zhang, J., and Bolton, E.E., J. Cheminf., 2021, vol. 13, no. 1, p. 19. https://doi.org/10.1186/s13321-021-00489-0

    Article  CAS  Google Scholar 

  54. Milman, B.L. and Zhurkovich, I.K., Analitika, 2023, vol. 13, no. 1, p. 56. https://doi.org/10.22184/2227-572X.2023.13.1.56.59

    Article  Google Scholar 

  55. Hoffmann, M.A., Kretschmer, F., Ludwig, M., and Bocker, S., Metabolites, 2023, vol. 13, no. 3, p. 314. https://doi.org/10.3390/metabo13030314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cave, J.R., Parker, E., Lebrilla, C., and Waterhouse, A.L., J. Agric. Food Chem., 2019, vol. 67, no. 48, p. Ñ. 13318. https://doi.org/10.1021/acs.jafc.9b04384

  57. Milman, B.L. and Zhurkovich, I.K., TrAC, Trends Anal. Chem., 2016, vol. 80, p. 636. https://doi.org/10.1016/j.trac.2016.04.024

    Article  CAS  Google Scholar 

  58. Bittremieux, W., Wang, M., and Dorrestein, P.C., Metabolomics, 2022, vol. 18, no. 12, p. 94. https://doi.org/10.1007/s11306-022-01947-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Samokhin, A., Sotnezova, K., and Revelsky, I., Eur. J. Mass Spectrom., 2019, vol. 25, no. 6, p. 439. https://doi.org/10.1177/1469066719855503

    Article  CAS  Google Scholar 

  60. Chua, C.K., Lv, Y., Zhao, W., Ren, Y., and Zhang, H.J., Int. J. Mass Spectrom. Ion Processes, 2020, vol. 451, 116321. https://doi.org/10.1016/j.ijms.2020.116321

  61. Samokhin, A.S. and Matyushin, D.D., Rapid Commun. Mass Spectrom., 2023, vol. 37, no. 3, e9437. https://doi.org/10.1002/rcm.9437

  62. Oberacher, H., Sasse, M., Antignac, J.P., Guitton, Y., Debrauwer, L., Jamin, E.L., Schulze, T., Krauss, M., Covaci, A., Caballero-Casero, N., Rousseau, K., Damont, A., Fenaille, F., Lamoree, M., and Schymanski, E.L., Environ. Sci. Eur., 2020, vol. 32, p. 43. https://doi.org/10.1186/s12302-020-00314-9

    Article  CAS  Google Scholar 

  63. Krettler, C.A. and Thallinger, G.G., Briefings Bioinf., 2021, vol. 22, no. 6, bbab073. https://doi.org/10.1093/bib/bbab073

  64. Milman, B.L., TrAC, Trends Anal. Chem., 2015, vol. 69, p. 24. https://doi.org/10.1016/j.trac.2014.12.009

    Article  CAS  ADS  Google Scholar 

  65. Montenegro-Burke, J.R., Guijas, C., and Siuzdak, G., in Computational Methods and Data Analysis for Metabolomics, Li, S., Ed., New York: Humana, 2020, p. 149. https://doi.org/10.1007/978-1-0716-0239-3_9

  66. m/zCloud. https://www.mzcloud.org. Accessed March 22, 2023.

  67. MassBank. https://massbank.eu/MassBank/Contents. Accessed March 22, 2023.

  68. Lee, S., Hwang, S., Seo, M., Shin, K.B., Kim, K.H., Park, G.W., Kim, J.Y., Yoo, J.S., and No, K.T., Phytochemistry, 2020, vol. 177, 112427. https://doi.org/10.1016/j.phytochem.2020.112427

  69. Davidsen, A., Mardal, M., Linnet, K., and Dalsgaard, P.W., PloS One, 2020, vol. 15, no. 11, p. e0242224. https://doi.org/10.1371/journal.pone.0242224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, Y., Zhu, W., Xiang, Q., Kim, J., Dufresne, C., Liu, Y., Li, T., and Chen, S., Int. J. Mol. Sci., 2023, vol. 24, no. 3, p. 2249. https://doi.org/10.3390/ijms24032249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tada, I., Tsugawa, H., Meister, I., Zhang, P., Shu, R., Katsumi, R., Wheelock, C.E., Arita, M., and Chaleckis, R., Metabolites, 2019, vol. 9, no. 11, p. 251. https://doi.org/10.3390/metabo9110251

    Article  CAS  PubMed  Google Scholar 

  72. King, E., Overstreet, R., Nguyen, J., and Ciesielski, D., J. Chem. Inf. Model., 2022, vol. 62, no. 16, p. 3724. https://doi.org/10.1021/acs.jcim.2c00620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim, S., Kato, I., and Zhang, X., Metabolites, 2022, vol. 12, no. 8, p. 694. https://doi.org/10.3390/metabo12080694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bittremieux, W., Schmid, R., Huber, F., Van der Hooft, J.J., Wang, M., and Dorrestein, P.C., J. Am. Soc. Mass Spectrom., 2022, vol. 33, no. 9, p. 1733. https://doi.org/10.1021/jasms.2c00153

    Article  CAS  PubMed  Google Scholar 

  75. Li, Y., Kind, T., Folz, J., Vaniya, A., Mehta, S.S., and Fiehn, O., Nat. Methods, 2021, vol. 18, no. 12, p. 1524. https://doi.org/10.1038/s41592-021-01331-z

    Article  CAS  PubMed  Google Scholar 

  76. Roberts, M.J., Moorthy, A.S., Sisco, E., and Kearsley, A.J., Anal. Chim. Acta, 2022, vol. 1230. https://doi.org/10.1016/j.aca.2022.340247

  77. Matyushin, D.D., Sholokhova, A.Y., and Buryak, A.K., Anal. Chem., 2020, vol. 92, no. 17, p. 11818. https://doi.org/10.1021/acs.analchem.0c02082

    Article  CAS  PubMed  Google Scholar 

  78. Huber, F., Van der Burg, S., Van der Hooft, J.J., and Ridder, L., J. Cheminf., 2021, vol. 13, no. 1, p. 84. https://doi.org/10.1186/s13321-021-00558-4

    Article  Google Scholar 

  79. GNPS. https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp. Accessed March 23, 2023.

  80. Aksenov, A.A., Lab. Proizvod., 2019, no. 6, p. 8. https://doi.org/10.32757/2619-0923.2019.6.10.8.15

  81. Quinlan, Z.A., Koester, I., Aron, A.T., Petras, D., Aluwihare, L.I., Dorrestein, P.C., Nelson, C.E., and Kelly, L.W., Metabolites, 2022, vol. 12, no. 12, p. 1275. https://doi.org/10.3390/metabo12121275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Neto, F.C. and Raftery, D., Anal. Chem., 2021, vol. 93, no. 35, p. 12001. https://doi.org/10.1021/acs.analchem.1c02041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Elie, N., Santerre, C., and Touboul, D., Anal. Chem., 2019, vol. 91, no. 18, p. 11489. https://doi.org/10.1021/acs.analchem.9b02802

    Article  CAS  PubMed  Google Scholar 

  84. Olivon, F., Elie, N., Grelier, G., Roussi, F., Litaudon, M., and Touboul, D., Anal. Chem., 2018, vol. 90, no. 23, p. 13900. https://doi.org/10.1021/acs.analchem.8b03099

    Article  CAS  PubMed  Google Scholar 

  85. Chen, L., Lu, W., Wang, L., Xing, X., Chen, Z., Teng, X., Zeng, X., Muscarella, A.D., Shen, Y., Cowan, A., McReynolds, M.R., Kennedy, B.J., Lato, A.M., Campagna, S.R., Singh, M., and Rabinowitz, J.D., Nat. Methods, 2021, vol. 18, no. 11, p. 1377. https://doi.org/10.1038/s41592-021-01303-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhou, Z., Luo, M., Zhang, H., Yin, Y., Cai, Y., and Zhu, Z.J., Nat. Commun., 2022, vol. 13, p. 6656. https://doi.org/10.1038/s41467-022-34537-6

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  87. Treen, D.G., Wan, M., Xing, S., Louie, K.B., Huan, T., Dorrestein, P.C., Northen, T.R., and Bowen, B.P., Nat. Commun., 2022, vol. 13, p. 2510. https://doi.org/10.1038/s41467-022-30118-9

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  88. Ljoncheva, M., Stepisnik, T., Dzeroski, S., and Kosjek, T., Trends Environ. Anal. Chem., 2020, vol. 28, e00099. https://doi.org/10.1016/j.teac.2020.e00099

  89. Fan, Z., Alley, A., Ghaffari, K., and Ressom, H.W., Metabolomics, 2020, vol. 16, p. 104. https://doi.org/10.1007/s11306-020-01726-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Young, A., Wang, B., and Rost, H., arXiv:2111.04824, 2021. https://doi.org/10.48550/arXiv.2111.04824

  91. Murphy, M., Jegelka, S., Fraenkel, E., Kind, T., Healey, D., and Butler, T., arXiv:2301.11419, 2023. https://doi.org/10.48550/arXiv.2301.11419

  92. Hoffmann, M.A., Nothias, L.F., Ludwig, M., Fleischauer, M., Gentry, E.C., Witting, M., Dorrestein, P.C., Duhrkop, K., and Bocker, S., Nat. Biotechnol., 2022, vol. 40, no. 3, p. 411. https://doi.org/10.1038/s41587-021-01045-9

    Article  CAS  PubMed  Google Scholar 

  93. Bremer, P.L., Vaniya, A., Kind, T., Wang, S., and Fiehn, O., J. Chem. Inf. Model., 2022, vol. 62, no. 17, p. 4049. https://doi.org/10.1021/acs.jcim.2c00936

    Article  CAS  PubMed  Google Scholar 

  94. Milman, B.L., Ostrovidova, E.V., and Zhurkovich, I.K., Mass Spectrom. Lett., 2019, vol. 10, no. 3, p. 93. https://doi.org/10.5478/msl.2019.10.3.93

    Article  CAS  Google Scholar 

  95. Wang, F., Liigand, J., Tian, S., Arndt, D., Greiner, R., and Wishart, D.S., Anal. Chem., 2021, vol. 93, no. 34, p. 11692. https://doi.org/10.1021/acs.analchem.1c01465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Koopman, J. and Grimme, S., J. Am. Soc. Mass Spectrom., 2021, vol. 32, no. 7, p. 1735. https://doi.org/10.1021/jasms.1c00098

    Article  CAS  PubMed  Google Scholar 

  97. Schnegotzki, R., Koopman, J., Grimme, S., and Sussmuth, R.D., Chem.—Eur. J., 2022, vol. 28, no. 27. https://doi.org/10.1002/chem.202200318

  98. Duhrkop, K., Fleischauer, M., Ludwig, M., Aksenov, A.A., Melnik, A.V., Meusel, M., Dorrestein, P.C., Rousu, J., and Bocker, S., Nat. Methods, 2019, vol. 16, no. 4, p. 299. https://doi.org/10.1038/s41592-019-0344-8

    Article  CAS  PubMed  Google Scholar 

  99. Stravs, M.A., Duhrkop, K., Bocker, S., and Zamboni, N., Nat. Methods, 2022, vol. 19, no. 7, p. 865. https://doi.org/10.1038/s41592-022-01486-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zulfiqar, M., Gadelha, L., Steinbeck, C., Sorokina, M., and Peters, K., J. Cheminf., 2023, vol. 15, p. 32. https://doi.org/10.1186/s13321-023-00695-y

    Article  CAS  Google Scholar 

  101. Liu, Y., De Vijlder, T., Bittremieux, W., Laukens, K., and Heyndrickx, W., Rapid Commun. Mass Spectrom., 2021, p. e9120. https://doi.org/10.1002/rcm.9120

  102. Niessen, W.M.A. and Correa, C.R.A., Interpretation of MS-MS Mass Spectra of Drugs and Pesticides, Hoboken: Wiley, 2017. https://toc.library.ethz.ch/objects/pdf03/e01_978-1-118-50018-7_01.pdf. Accessed March 24, 2023.

    Book  Google Scholar 

  103. Steckel, A. and Schlosser, G., Molecules, 2019, vol. 24, no. 3, p. 611. https://doi.org/10.3390/molecules24030611

    Article  PubMed  PubMed Central  Google Scholar 

  104. Matyushin, D.D. and Buryak, A.K., IEEE Access, 2020, vol. 8, p. 223140. https://doi.org/10.1109/access.2020.3045047

    Article  Google Scholar 

  105. Matyushin, D.D., Sholokhova, A.Y., Karnaeva, A.E., and Buryak, A.K., Chemom. Intell. Lab. Syst., 2020, vol. 202, p. 104042. https://doi.org/10.1016/j.chemolab.2020.104042

    Article  CAS  Google Scholar 

  106. Kireev, A., Osipenko, S., Mallard, G., Nikolaev, E., and Kostyukevich, Y., Separations, 2022, vol. 9, no. 10, p. 265. https://doi.org/10.3390/separations9100265

    Article  CAS  Google Scholar 

  107. Domingo-Almenara, X., Guijas, C., Billings, E., Montenegro-Burke, J.R., Uritboonthai, W., Aisporna, A.E., Chen, E., Benton, H.P., and Siuzdak, G., Nat. Commun., 2019, vol. 10, no. 1, p. 5811. https://doi.org/10.1038/s41467-019-13680-7

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  108. Witting, M. and Bocker, S., J. Sep. Sci., 2020, vol. 43, nos. 9–10, p. 1746. https://doi.org/10.1002/jssc.202000060

    Article  CAS  PubMed  Google Scholar 

  109. Bonini, P., Kind, T., Tsugawa, H., Barupal, D.K., and Fiehn, O., Anal. Chem., 2020, vol. 92, no. 11, p. 7515. https://doi.org/10.1021/acs.analchem.9b05765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fedorova, E.S., Matyushin, D.D., Plyushchenko, I.V., Stavrianidi, A.N., and Buryak, A.K., J. Chromatogr. A, 2022, vol. 1664, 462792. https://doi.org/10.1016/j.chroma.2021.462792

  111. Osipenko, S., Nikolaev, E., and Kostyukevich, Y., Separations, 2022, vol. 9, no. 10, p. 291. https://doi.org/10.3390/separations9100291

    Article  Google Scholar 

  112. Lenski, M., Maallem, S., Zarcone, G., Garcon, G., Lo-Guidice, J.M., Antherieu, S., and Allorge, D., Metabolites, 2023, vol. 13, no. 2, p. 282. https://doi.org/10.3390/metabo13020282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bouwmeester, R., Martens, L., and Degroeve, S., Anal. Chem., 2020, vol. 92, no. 9, p. 6571. https://doi.org/10.1021/acs.analchem.0c00233

    Article  CAS  PubMed  Google Scholar 

  114. Paglia, G., Smith, A.J., and Astarita, G., Mass Spectrom. Rev., 2022, vol. 41, no. 5, p. 722. https://doi.org/10.1002/mas.21686

    Article  CAS  PubMed  ADS  Google Scholar 

  115. Belova, L., Caballero-Casero, N., Van Nuijs, A.L., and Covaci, A., Anal. Chem., 2021, vol. 93, no. 16, p. 6428. https://doi.org/10.1021/acs.analchem.1c00142

    Article  CAS  PubMed  Google Scholar 

  116. Hohrenk, L., Itzel, F., Baetz, N., Tuerk, J., Vosough, M., and Schmidt, T.C., Anal. Chem., 2019, vol. 92, no. 2, p. 1898. https://doi.org/10.1021/acs.analchem.9b04095

    Article  CAS  PubMed  Google Scholar 

  117. Dekermanjian, J., Labeikovsky, W., Ghosh, D., and Kechris, K., Metabolites, 2021, vol. 11, no. 10, p. 678. https://doi.org/10.3390/metabo11100678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schymanski, E.L., Singer, H.P., Slobodnik, J., Ipolyi, I.M., Oswald, P., Krauss, M., Schulze, T., Haglund, P., Letzel, T., Grosse, S., Thomaidis, N.S., Bletsou, A., Zwiener, C., Ibanez, M., Portoles, T., De Boer, R., Reid, M.J., Onghena, M., Kunkel, U., Schulz, W., Guillon, A., Noyon, N., Leroy, G., Bados, P., Bogialli, S., Stipanicev, D., Rostkowski, P., and Hollender, J., Anal. Bioanal. Chem., 2015, vol. 407, p. 6237. https://doi.org/10.1007/s00216-015-8681-7

    Article  CAS  PubMed  Google Scholar 

  119. CASMI. http://www.casmi-contest.org/2022/index.shtml. Accessed March 25, 2023.

  120. Pezzatti, J., Gonzalez-Ruiz, V., Boccard, J., Guillarme, D., and Rudaz, S., Metabolites, 2020, vol. 10, no. 11, p. 464. https://doi.org/10.3390/metabo10110464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Clark, T.N., Houriet, J., Vidar, W.S., Kellogg, J.J., Todd, D.A., Cech, N.B., and Linington, R.G., J. Nat. Prod., 2021, vol. 84, no. 3, p. 824. https://doi.org/10.1021/acs.jnatprod.0c01376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wong, J.W., Wang, J., Chang, J.S., Chow, W., Carlson, R., Rajski, L., Fernandez-Alba, A.R., Self, R., Cooke, W.K., Lock, C.M., Mercer, G.E., Mastovska, K., Schmitz, J., Vaclavik, L., Li, L., Panawennage, D., Pang, G.F., Zhou, H., Miao, S., Ho, C., Lam, T.C.H., To, Y.B.S., Zomer, P., Hung, Y.C., Lin, S.W., Liao, C.D., Culberson, D., Taylor, T., Wu, Y., Yu, D., Lim, P.L., Wu, Q., Schirle-Keller, J.P.X., Williams, S.M., Johnson, Y.S., Nason, S.L., Ammirata, M., Eitzer, B.D., Willis, M., Wyatt, S., Kwon, S.Y., Udawatte, N., Priyasantha, K., Wan, P., Filigenzi, M.S., Bakota, E.L., Sumarah, M.W., Renaud, J.B., Parinet, J., Bire, R., Hort, V., Prakash, S., Conway, M., Pyke, J.S., Yang, D.H.D., Jia, W., Zhang, K., and Hayward, D.G., J. Agric. Food Chem., 2021, vol. 69, no. 44, p. 13200. https://doi.org/10.1021/acs.jafc.1c04437

    Article  CAS  PubMed  Google Scholar 

  123. Anderson, B.G., Raskind, A., Habra, H., Kennedy, R.T., and Evans, C.R., Anal. Chem., 2021, vol. 93, no. 48, p. 15840. https://doi.org/10.1021/acs.analchem.1c02149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was carried out in accordance with the thematic plan of applied and scientific research and development in the field of healthcare within the State Assignment of the Federal Medical Biological Agency of Russia (code 64.001.23.800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Milman.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milman, B.L., Zhurkovich, I.K. New Trends in Chemical Identification Methodology. J Anal Chem 79, 119–133 (2024). https://doi.org/10.1134/S1061934824020126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934824020126

Keywords:

Navigation