Skip to main content
Log in

Satellite Microwave Radiometric Measurements of Extreme Temperature Rise in East Antarctica in March 2022

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

The results of sensing of East Antarctica and the adjoining areas of the Southern Ocean by MTVZA-GYа microwave satellite radiometers at frequency ν = 10–190 GHz and AMSR2 at ν = 6–89 GHz in conditions of warm and humid air (an atmospheric river (AR)) invasion from the area of Tasmania area in March 2022 are presented. The surface air warming caused by AR was recorded by the Automatic Weather Station at the coast and at the Vostok, Concordia, and Dome CII stations in East Antarctica. The variability of atmospheric characteristics above Antarctica was studied using readings of radiosondes launched from the Casey station at the coast and Concordia station at a height of 3230 m and time series of brightness temperatures averaged over a circular area 200 km in diameter with the center at a distance of ~200 km from the Concordia station. The influence of air and surface temperature and atmospheric water-vapor content variations on brightness temperature Tb(ν) variations was estimated from the results of modeling of microwave radiation transfer in the atmosphere–firn system using radiosonde profiles from the Concordia station. It was shown that the increase in Tb(ν) at frequencies of 89–92 GHz of a large part of East Antarctica was caused mainly by an increase in the firn temperature. The increase at frequencies of ∼176–190 GHz in the area of the water vapor absorption line was caused by an increase of both the firn temperature and air temperature and humidity. Based on measurements of brightness temperature Tb(ν) over the open ocean at frequencies in the atmospheric-transparency windows of ∼6–48 and 88–92 GHz, wind speed W, cloud liquid-water content Q, and atmospheric water-vapor content V were determined and the temporal variability of parameters in the AR area was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Mitnik, M.L. and Mitnik, L.M., Retrieval of total water vapor content and total cloud liquid water content over the ocean by microwave sensing from DMSP, TRMM, Aqua and ADEOS-II satellites, Issledovanie Zemli iz kosmosa, 2006, no. 4, pp. 34‒41.

  2. Mitnik, M.L. and Mitnik, L.M., Algorithm of sea surface wind speed retrieval from Aqua AMSR-E measurements, Issledovanie Zemli iz kosmosa, 2011, no. 6, pp. 34‒44.

  3. Mitnik, L.M., Kuleshov, V.P., and Mitnik, M.L., Sudden stratospheric warming over Antarctica in September 2019 from the data of the MTVZA-GYa radiometer on the Meteor-M no. 2-2 satellite, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, vol. 17, no. 7, pp. 229–242. https://doi.org/10.21046/2070-7401-2020-17-7-229-242

  4. Mitnik, L.M., Kuleshov, V.P., and Mitnik, M.L., Sudden stratospheric warming in January 2021 from microwave measurements from Meteor-M no. 2-2 satellite, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2021, vol. 18, no. 3, pp. 139–148. https://doi.org/10.21046/2070-7401-2021-18-3-288-297

  5. Chernyavsky, G.M., Mitnik, L.M., Kuleshov, V.P., Mitnik, M.L., and Cherny, I.V., Microwave sensing of the Ocean, atmosphere and land surface from Meteor-M no. 2 satellite data, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, vol. 15, no. 4, pp. 78–100. https://doi.org/10.21046/2070-7401-2018-15-4-78-100

  6. Chernyavsky, G.M., Mitnik, L.M., Kuleshov, V.P., Mitnik, M.L., Streltsov, A.M., Evseev, G.E., and Cherny, I.V., Brightness temperature modeling and first results derived from the MTVZA-GY radiometer of the Meteor-M no. 2-2 satellite, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2020, vol. 17, no. 3, pp. 51–65. https://doi.org/10.21046/2070-7401-2020-17-3-51-65

  7. Brucker, L., Picard, G., Arnaud, L., Barnola, J.-M., Schneebel, M., Brunail, H., Lefebvre, E., and Fily, M., Modeling time series of microwave brightness temperature at Dome C, Antarctica, using vertically resolved snow temperature and microstructure measurements, J. Glaciol., 2011, vol. 57, no. 201, pp. 171–182.

    Article  ADS  Google Scholar 

  8. Buehler, S.A., Kuvatov, M., Sreerekha, T.R., John, V.O., Rydberg, B., Eriksson, P., and Notholt, J., A cloud filtering method for microwave upper tropospheric humidity measurements, Atmospheric Chemistry and Physics, 2007, vol. 7, pp. 5531–5542.

    Article  ADS  CAS  Google Scholar 

  9. Buehler, S.A., Prange, M., Mrziglod, J., John, V.O., Burgdorf, M., and Lemke, O., Opportunistic constant target matching—A new method for satellite intercalibration, Earth and Space Science, 2020, vol. 7, p. e2019EA000856. https://doi.org/10.1029/2019EA000856

  10. Chen, R. and Bennartz, R., Sensitivity of 89–190-GHz microwave observations to ice particle scattering, J. Appl. Meteorol. Climatol., 2020, vol. 59, pp. 1195–1215. https://doi.org/10.1175/JAMC-D-19-0293.1

    Article  ADS  Google Scholar 

  11. Chung, E., Soden, B., and John, V.O., Intercalibrating microwave satellite observations for monitoring long-term variations in upper and midtropospheric water vapor, J. Atmospheric and Oceanic Technology, 2013, vol. 30, pp. 2303–2319. https://doi.org/10.1175/JTECH-D-13-00001.1

    Article  ADS  Google Scholar 

  12. Comiso, J.C., Polar Oceans from Space, New York: Springer, 2010.

    Book  Google Scholar 

  13. Johnson, A., Hock, R., and Fahnestock, M., Spatial variability and regional trends of Antarctic ice shelf surface melt duration over 1979–2020 derived from passive microwave data, J. Glaciol., 2022, vol. 68, no. 269, pp. 533–546. https://doi.org/10.1017/jog.2021.112

    Article  ADS  Google Scholar 

  14. Kar, R., Aksoy, M., Kaurejo, D., Atrey, P., and Devadason, J.A., Antarctic firn characterization via wideband microwave radiometry, Remote Sensing, 2022, vol. 14, no. 9, p. 2258. https://doi.org/10.3390/rs14092258

    Article  ADS  Google Scholar 

  15. Macelloni, G., Brogioni, M., Pampaloni, P., and Cagnati, A., Multifrequency microwave emission from the Dome-C area on the East Antarctic plateau: Temporal and spatial variability, IEEE Trans. Geoscience and Remote Sensing, 2007, vol. 45, no. 7, pp. 2029–2039. https://doi.org/10.1109/TGRS.2007.890805

    Article  ADS  Google Scholar 

  16. Matrosov, S.Y., Characteristics of landfalling atmospheric rivers inferred from satellite observations over the Eastern North Pacific Ocean, Monthly Weather Review, 2013, vol. 141, no. 11, pp. 3757–3768.

    Article  ADS  Google Scholar 

  17. Melsheimer, C., Spreen, G., Ye, Y., and Shokr, M., Antarctic sea ice types from active and passive microwave remote sensing: preprint, Cryosphere: Discussion, 2022. https://doi.org/10.5194/tc-2021-381

  18. Meyer, H., Katurji, M., Appelhans, T., Müller, M.U., Nauss, T., Roudier, P., and Zawar-Reza, P., Mapping daily air temperature for Antarctica based on MODIS LST, Remote Sensing, 2016, vol. 8, no. 9, p. 732. https://doi.org/10.3390/rs8090732

    Article  ADS  Google Scholar 

  19. Mitnik, L.M., Mitnik, M.L., and Zabolotskikh, E.V., Microwave sensing of the atmosphere-ocean system with ADEOS-II AMSR and Aqua AMSR-E, J. Remote Sens. Soc. Jpn., 2009, vol. 29, no. 1, pp. 156–165.

    Google Scholar 

  20. Mitnik, L., Kuleshov, V., Mitnik, M., Streltsov, A.M., Cherniavsky, G., and Cherny, I., Microwave scanner sounder MTVZA-GY on new Russian meteorological satellite Meteor-M no. 2: modeling, calibration and measurements, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2017, vol. 10, no. 7, pp. 3036–3045. https://doi.org/10.1109/JSTARS.2017.2695224

    Article  ADS  Google Scholar 

  21. Mitnik, L.M., Kuleshov, V.P., Mitnik, M.L., and Baranyuk, A.V., Passive microwave observations of South America and surrounding oceans from Russian Meteor-M no. 2 and Japan GCOM-W1 satellites, Int. J. Remote Sens., 2018, vol. 39, no. 13, pp. 4513–4530. https://doi.org/10.1080/01431161.2018.1425569

    Article  Google Scholar 

  22. Mitnik, L., Kuleshov, V., Panfilova, M., Karaev, V., Mitnik, M., and Baranyuk, A., Satellite study of atmospheric cyclones and rivers around Antarctica, Proc. IGARSS, 2021, pp. 7071–7074. https://doi.org/10.1109/IGARSS47720.2021.9553258

  23. Mitnik, L.M., Kuleshov, V.P., Mitnik, M.L., Chernyavski, G.M., Cherny, I.V., and Streltsov, A.M., Microwave radiometer MTVZA-GY on new Russian satellite Meteor-M no. 2-2 and sudden stratospheric warming over Antarctica, IEEE J. Selected Topics of Applied Remote Sensing, 2022, vol. 15, pp. 820–830. https://doi.org/10.1109/JSTARS.2021.3133425

    Article  ADS  Google Scholar 

  24. Mo, Z., Zeng, Z., Huang, L., Liu, L., Zhou, L., Huang, L., Zhou, L., Ren, C., and He, H., Investigation of Antarctic precipitable water vapor variability and trend from 18 year (2001 to 2018) data of four reanalyses based on radiosonde and GNSS observations, Remote Sensing, 2021, vol. 13, no. 19, p. 3901. https://doi.org/10.3390/rs13193901

    Article  ADS  Google Scholar 

  25. Moradi, I., Ferraro, R., Eriksson, P., and Weng, F., Intercalibration and validation of observations from ATMS and SAPHIR microwave sounders, IEEE Trans. Geoscience and Remote Sensing, 2015, vol. 53, no. 11, pp. 5915–5925.

    Article  ADS  Google Scholar 

  26. Narvekar, P.S., Heygster, G., Jackson, T.J., Bindlish, R., Macelloni, G., and Notholt, J., Passive polarimetric microwave signatures observed over Antarctica, IEEE Trans. Geoscience and Remote Sensing, 2010, vol. 48, no. 3, pp. 1059–1075.

    Article  ADS  Google Scholar 

  27. Pagano, T.S., Chahine, M.T., and Fetzer, E.J., The Atmospheric Infrared Sounder (AIRS) on the NASA Aqua spacecraft: A general remote sensing tool for understanding atmospheric structure, dynamics and composition, Proc. SPIE, 2010, vol. 7827. https://doi.org/10.1117/12.865335

  28. Payne, V.H., Delamere, J.S., Cady-Pereira, K.E., Gamache, R.R., Moncet, J.-L., Mlawer, E.J., and Clough, S.A., Air-broadened half-widths of the 22- and 183-GHz water-vapor lines, IEEE Trans. Geoscience and Remote Sensing, 2008, vol. 46, no. 11, pp. 3601–3617.

    Article  ADS  Google Scholar 

  29. Picard, G., Royer, A., Arnaud, L., and Fily, M., Influence of meter-scale wind-formed features on the variability of the microwave brightness temperature around Dome C in Antarctica, Cryosphere, 2014, vol. 8, Issue 3, pp. 1105–1119.

    Article  ADS  Google Scholar 

  30. Pohl, B., Favier, V., Wille, J., Udy, D.G., Vance, T.R., Pergaut, J., Dutrievoz, N., Blanchet, J., Kittel, C., Amory, C., Krinner, G., and Gordon, F., Relationship between weather regimes and atmospheric rivers in East Antarctica, J. Geophysical Research: Atmospheres, 2021, vol. 126, no. 24, p. e2021JD035294. https://doi.org/10.1029/2021JD035294

  31. Pope, A., Wagner, P., Johnson, R., Shutler, J.D., Baeseman, J., and Newman, L., Community review of Southern Ocean satellite data needs, Antarctic Science, 2017, vol. 29, no. 2, pp. 97–138.

    Article  ADS  Google Scholar 

  32. Ricaud, P., Carminati, F., Courcoux, Y., Pellegrini, A., Attié, J.-L., El Amraoui, L., Abida, R., Genthon, C., August, T., and Warner, J., Statistical analyses and correlation between tropospheric temperature and humidity at Dome C, Antarctica, Antarctic Science, 2014, vol. 26, Issue 3, pp. 290–308.

    Article  ADS  Google Scholar 

  33. Ricaud P., Grigioni P., Zbinden R., Attié J.-L., Genoni L., Galeandro A., Moggio L., Montaguti S., Petenko I., Legovini P., Review of tropospheric temperature, absolute humidity and integrated water vapour from the HAMSTRAD radiometer installed at Dome C, Antarctica, 2009–2014, Antarctic Science, 2015, vol. 27, no. 6, pp. 598–616.

    Article  ADS  Google Scholar 

  34. Ricaud, P., Grigioni, P., Roehrig, R., Durand, P., and Veron, D.E., Trends in atmospheric humidity and temperature above Dome C, Antarctica evaluated from observations and reanalyses, Atmosphere, 2020a, vol. 11, no. 8, p. 836. https://doi.org/10.3390/atmos11080836

    Article  ADS  Google Scholar 

  35. Ricaud, P., Del Guasta, M., Bazile, E., Azouz, N., Lupi, A., Durand, P., Attié, J.-L., Veron, D., Guidard, V., and Grigioni, P., Supercooled liquid water cloud observed, analysed, and modelled at the top of the planetary boundary layer above Dome C, Antarctica, Atmospheric Chemistry and Physics, 2020b, vol. 20, pp. 4167–4191.

    Article  ADS  CAS  Google Scholar 

  36. Sims, G., Ashley, M.C.B., Cui, X., Everett, J.R., Feng, L.L., Gong, X., Hengst, S., Hu, Z., Kulesa, C., Lawrence, J.S., Luong-Van, D.M., Ricaud, P., Shang, Z., Storey, J.W.V., Wang, L., Yang, H., Yang, J., Zhou, X., and Zhu, Z., Precipitable water vapor above Dome A, Antarctica, determined from diffuse optical sky spectra, Publications of the Astronomical Society of the Pacific, 2012, vol. 124, pp. 74–83.

    Article  ADS  Google Scholar 

  37. Surdyk, S., Using microwave brightness temperature to detect short-term surface air temperature changes in Antarctica: An analytical approach, Remote Sensing of Environment, 2002, vol. 80, no. 2, pp. 256–271.

    Article  ADS  Google Scholar 

  38. Turner, J., Lu, H., King, J.C., Carpentier, S., Lazzara, M., Phillips, T., and Wille, J., An extreme high temperature event in coastal East Antarctica associated with an atmospheric river and record summer downslope winds, Geophys. Res. Lett., 2022, vol. 49, p. e2021GL097108. https://doi.org/10.1029/2021GL097108.

  39. Ye, H., Fetzer, E.J., Bromwich, D.H., Fishbein, E.F., Olsen, E.T., Granger, S.L., Lee, S.-Y., Chen, L., and Lambrigtsen, B.H., Atmospheric total precipitable water from AIRS and ECMWF during Antarctic summer, Geophys. Res. Lett., 2007, vol. 34, p. L19701. https://doi.org/10.1029/2006GL028547

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Dr. of Technical Sciences I.V. Cherny (AO Russian Space Systems) for providing data from the MTVZA-GYa radiometer and the Japanese Aerospace Exploration Agency JAXA for providing the data from the AMSR2 and GMI radiometers.

Funding

The work was supported by a grant from the Russian Science Foundation, project no. 20-17-00179.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Mitnik.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by S. Avodkova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitnik, L.M., Kuleshov, V.P., Mitnik, M.L. et al. Satellite Microwave Radiometric Measurements of Extreme Temperature Rise in East Antarctica in March 2022. Cosmic Res 61 (Suppl 1), S107–S117 (2023). https://doi.org/10.1134/S0010952523700612

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952523700612

Keywords:

Navigation