Skip to main content
Log in

Ionospheric Response to Anomalous Geomagnetic Storm of 27 October 2021–05 November 2021

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This study presents the first results on the ionospheric response and occurrence of ionospheric irregularities to the anomalous geomagnetic storm which occurred during period of 27 October 2021–05 November 2021 that was the first strong anomalous storm occurred in the current solar cycle with symmetric horizontal component (SYM-H) peak value of − 118 nT. Multi-site GPS observations from middle latitude of European longitudinal, equatorial region of American and Asian sector were used to analyze variations of total electron content (TEC) and the occurrence of the ionospheric irregularities during the storm period. The storm caused composite consequences on the terrestrial ionosphere. The remarkable positive ionospheric storm with deviation in TEC (ΔTEC) \(\approx\)(120–200) %  was occurred at equatorial station over American within longitudinal belt of \({\left(65-74\right)}^{^\circ }\)W during the beginning of recovery phase of the storm. In addition, appreciable vertical total electron content enhancement of  ΔTEC \(\approx\)(40–60) % was also noticed during recovery phase over European middle latitude with in longitudinal belt of \({\left(2-20\right)}^{^\circ }\) E. Regarding, occurrence of ionospheric irregularity the present study concluded that, the generation of ionospheric irregularity was completely suppressed during initial, major and recovery phase of the storm over both equatorial regions of American and Indian longitudinal sector. However, there was a moderate occurrence of ionospheric irregularity over both sectors during 27–31 October 2021, which could be attributed to the effect of 28 October solar flare and less intensity of southward-directed Bz component of the interplanetary magnetic field (IMFBz) during this periods. Moreover, the local time at which the maximum excursion of SYM-H may matter for the suppression of irregularities during the anomalous strong storm of 4 November 2021. In future, it may need further study, using additional observations and numerical modeling which may  shed more light on the response of anomalous geomagnetic storm of 4 November 2021. This study is presenting the first result of ionospheric response and the effects of anomalous geomagnetic storm of the current solar cycle on the occurrence of irregularities over low latitude region of South American and Asian sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

The GPS data can be downloded from https://data.unavco.org/archive/gnss/rinex/obs/. The solar wind data can be obtained or downloded from https://omniweb.gsfc.nasa.gov/cgi/nxl.cgi. The magnetometer data is publically available on https://supermag.jhuapl.edu/indices.

References

  • Abdu, M. A. (1997). Major phenomena of the equatorial ionosphere thermospher system under disturbed conditions. Journal of Atmospheric and Terrestrial Physics, 59, 1505–1519.

    Google Scholar 

  • Abdu, M. A., Batista, I. S., Takahashi, H., MacDougall, J., Sobral, J. H. A., Medeiros, A. F., & Trivedi, N. B. (2003). Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: A case study in Brazilian sector. Journal of Geophysical Research, 108, A12. https://doi.org/10.1029/2002JA009721

    Article  Google Scholar 

  • Abdu, M. A., Maruyama, T., Batista, I. S., Saito, S., & Nakamura, M. (2007). Ionospheric responses to the October 2003 superstorm: Longitude/local time effects over equatorial low and middle latitudes. Journal of Geophysical Research, 112, A10306. https://doi.org/10.1029/2006JA012228

    Article  Google Scholar 

  • Anderson, D. N. (1973). A theoretical study of the ionospheric F region equatorial anomaly, I, Theory. Planetary and Space Science, 21, 409–419. https://doi.org/10.1016/0032-0633(73)90040-8

    Article  Google Scholar 

  • Bagheri, F., & Lopez, R. E. (2022). Solar wind magnetosonic mach number as a control variable for energy dissipation during magnetic storms. Frontiers in Astronomy and Space Sciences, 9, 960535.

    Google Scholar 

  • Bagiya, M. S., Joshi, H. P., Iyer, K. N., Aggarwal, M., Ravindrayan, S., & Pathan, B. M. (2009). TEC variations during low solar activity period (2005–2007) near the equatorial ionospheric anomaly crest region in India. Annales Geophysicae, 27, 1047–1057. https://doi.org/10.5194/angeo-27-1047-2009

    Article  Google Scholar 

  • Balan, N., Shiokawa, K., Otsuka, Y., Kikuchi, T., Vijaya Lekshmi, D., Kawamura, S., Yamamoto, M., & Bailey, G. J. (2010). A physical mechanism of positive ionospheric storms at low latitudes and midlatitudes. Journal of Geophysical Research, 115, A02304. https://doi.org/10.1029/2009JA014515

    Article  Google Scholar 

  • Basu, S., Basu, S., Groves, K. M., Yeh, H.-C., Su, S.-Y., Rich, F. J., Sultan, P. J., & Keskinen, M. J. (2001b). Response of the equatorial ionosphere in the South Atlantic region to the great magnetic storm of July 15, 2000. Geophysical Research Letters, 28, 3577–3580. https://doi.org/10.1029/2001GL013259

    Article  CAS  Google Scholar 

  • Basu, S., Basu, S., Valladares, C. E., Yeh, H. C., Su, S. Y., MacKenzie, E., Sultan, P. J., Aarons, J., Rich, F. J., Doherty, P., & Groves, K. M. (2001a). Ionospheric effects of major magnetic storms during the international space weather period of September and October 1999: GPS observations, VHF/UHF scintillations, and in-situ density structures at middle and equatorial latitudes. Journal of Geophysical Research, 106(A12), 30389–30414.

    Google Scholar 

  • Biktash, L. Z. (2004). Role of the magnetospheric and ionospheric currents in the generation of the equatorial scintillations during geomagnetic storms. Annales Geophysicae, 22(9), 3195–3202. https://doi.org/10.5194/angeo-22-3195-2004.

  • Blagoveshchensky, D. V., & Sergeeva, M. A. (2020). Ionospheric parameters in the European sector during the magnetic storm of August 25–26, 2018. Advances in Space Research, 65, 11–18.

    Google Scholar 

  • Blanc, M., & Richmond, A. D. (1980). The ionospheric disturbance dynamo. Journal of Geophysical Research, 85, 1669–1686.

    Google Scholar 

  • Blewitt, G. (1990). An automatic editing algorithm for GPS data. Geophysical Research Letters, 17(3), 199–202.

    Google Scholar 

  • Booker, H. G., & Wells, H. W. (1938). Scattering of radio waves in the F region of ionosphere. Journal of Geophysical Research, 43, 249–256. https://doi.org/10.1029/TE043i003p00249

    Article  Google Scholar 

  • Borries, C., Berdermann, J., Jakowski, N., & Wilken, V. (2015). Ionospheric stormsa challenge for empirical forecast of the total electron content. Journal of Geophysical Research Space Physics, 120, 3175–3186.

    Google Scholar 

  • Boteler, D. (2019). A 21st century view of the March 1989 magnetic storm. Space Weather, 17(10), 1427–1441.

    Google Scholar 

  • Buonsanto, M. J. (1999). Ionospheric storms—a review. Space Science Reviews, 88(3–4), 563–601.

    CAS  Google Scholar 

  • Cai, X., Wang, W., Lin, D., Eastes, R. W., Qian, L., Zhu, Q., & Karan, D. K. (2023). Investigation of the southern hemisphere mid-high latitude thermospheric∑ O/N2 responses to the space-X storm. Journal of Geophysical Research: Space Physics, 128(3), e2022JA031002.

    CAS  Google Scholar 

  • Chakraborty, M., Kumar, S., De, B. K., & Guha, A. (2015). Effects of geomagnetic storm on low latitude ionospheric total electron content: A case study from Indian sector. Journal of Earth System Science, 124, 1115–1126.

    CAS  Google Scholar 

  • Chen, C., Liu, Y. D., Wang, R., Zhao, X., Hu, H., & Zhu, B. (2019). Characteristics of a gradual filament eruption and subsequent CME propagation in relation to a strong geomagnetic storm. The Astrophysical Journal, 884(1), 90.

    CAS  Google Scholar 

  • Cherniak, I., Krankowski, A., & Zakharenkova, I. (2014). Observation of the ionospheric irregularities over the Northern Hemisphere. Methodology and Service. Radio Science, 49(8), 653–662.

    Google Scholar 

  • Chu, F. D., Liu, J., Takahashi, H., Sobral, J. H. A., Taylor, M. J., & Medeiros, A. F. (2005). The climatology of ionospheric plasma bubbles and irregularities over Brazil. Annales Geophysical, 23, 379–384.

    Google Scholar 

  • Dashora, N., & Pandey, R. (2007). Variations in the total electron content near the crest of the equatorial ionization anomaly during the November 2004 geomagnetic storm. Earth, Planets and Space, 59(2), 127–131.

    Google Scholar 

  • Du, A. M., Tsurutani, B. T., & Sun, W. (2008). Anomalous geomagnetic storm of 21–22 January 2005: A storm main phase during northward IMFs. Journal of Geophysical Research: Space Physics, 113(A10). https://doi.org/10.1029/2008JA013284.

  • Dugassa, T., Bosco Habarulema, J., & Nigussie, M. (2019a). Investigation of the relationship between the spatial gradient of total electron content (TEC) between two nearby stations and the occurrence of ionospheric irregularities. Annales Geophysicae, 37, 1161–1180.

    CAS  Google Scholar 

  • Dugassa, T., Habarulema, J. B., & Nigussie, M. (2019b). Longitudinal variability of occurrence of ionospheric irregularities over the American, African and Indian regions during geomagnetic storms. Advances in Space Research, 63, 2609–2622.

    Google Scholar 

  • Fejer, B. G., & Emmert, J. T. (2003). Low-latitude ionospheric disturbance electric field effects during the recovery phase of the 19–21 October 1998 magnetic storm. Journal of Geophysical Research, 108(A12), 1454. https://doi.org/10.1029/2003JA010190

    Article  Google Scholar 

  • Fejer, B. G., Jensen, J. W., & Su, S.-Y. (2008). Seasonal and longitudinal dependence of equatorial disturbance vertical plasma drifts. Geophysical Research Letters, 35, L20106. https://doi.org/10.1029/2008GL035584

    Article  Google Scholar 

  • Fejer, B. G., & Scherliess, L. (1995). Time dependent response of equatorial ionospheric electric fields to magnetosapheric disturbances. Geophysical Research Letters, 22, 851.

    Google Scholar 

  • Fejer, B. G., Spiro, R. W., Wolf, R. A., & Foster, J. C. (1990). Latitudinal variation of perturbation electric fields during magnetically disturbed periods: 1986 SUNDIAL observations and model results. Annales Geophysicae, 8, 441–454.

    Google Scholar 

  • Fejer, C. G., & Woodman, R. F. (1979). Equatorial electric fields during magnetically disturbed conditions: The effect of the interplanetary magnetic field. Journal of Geophysical Research, 84, 5797–5802.

    Google Scholar 

  • Field, P., & Rishbeth, H. (1997). The response of the ionospheric f2-layer to geomagnetic activity: An analysis of worldwide data. Journal of Atmospheric and Solar-Terrestrial Physics, 59(2), 163–180.

    Google Scholar 

  • Fuller-Rowell, T., Millward, G., Richmond, A., et al. (2002). Storm-time changes in the upper atmosphere at low latitudes. Journal of Atmospheric and Solar-Terrestrial Physics, 64, 13831391.

    Google Scholar 

  • Galav, P., Rao, S. S., Sharma, S., Gordiyenko, G., & Pandey, R. (2014). Ionospheric response to the geomagnetic storm of 15 May 2005 over midlatitudes in the day and night sectors simultaneously. Journal of Geophysical Research: Space Physics, 119(6), 5020–5031.

    Google Scholar 

  • Gonzalez, W. D., Joselyn, J. A., Kamide, Y., et al. (1994). What is a geomagnetic storm ? Journal of Geophysical Research, 99, 5771. https://doi.org/10.1029/93JA02867

    Article  Google Scholar 

  • Greer, K., Immel, T., & Ridley, A. (2017). On the variation in the ionospheric response to geomagnetic storms with time of onset. Journal of Geophysical Research: Space Physics, 122(4), 4512–4525.

    CAS  Google Scholar 

  • Huang, C. M. (2013). Disturbance dynamo electric fields in response to geomagnetic storms occurring at different universal times. Journal of Geophysical Research Space Physics, 118, 46–501. https://doi.org/10.1029/2012JA018118

    Article  Google Scholar 

  • Immel, T. J., & Mannucci, A. J. (2013). Ionospheric redistribution during geomagnetic storms. Journal of Geophysical Research: Space Physics, 118, 7928–7939. https://doi.org/10.1002/2013JA018919

    Article  CAS  Google Scholar 

  • Jakowski, N., Stankov, S. M., Schlueter, S., & Klaehn, D. (2006). On developing a new ionospheric perturbation index for space weather operations. Advances in Space Research, 38, 2596–2600.

    Google Scholar 

  • Kelley, M. C. (2009). The Earth’s Ionosphere: Plasma Physics and Electrodynamics. Academic Press.

    Google Scholar 

  • Kikuchi, T., Hashimoto, K. H., & Nazoki, K. (2008). Penetration of magnetospheric electric fields to the equator during a geomagnetic storm. Journal of Geophysical Research., 113, A06214. https://doi.org/10.1029/2007JA012628

    Article  Google Scholar 

  • Kikuchi, T., Luhr, H., Kitamura, T., Saka, O., & Schlegel, K. (1996). Direct penetration of the polar electric field to the equator during a DP2 event as detected by the auroral and equatorial magnetometer chains and the EISCAT radar. Journal of Geophysical Research, 101(A8), 17161–17173. https://doi.org/10.1029/96JA01299

    Article  Google Scholar 

  • Kintner, P. M., Ledvina, B. M., & De Paula, E. R. (2007). GPS and ionospheric scintillations. Space Weather, 5, S09003. https://doi.org/10.1029/2006SW000260

    Article  Google Scholar 

  • Kumar, S., & Kumar, V. V. (2019). Ionospheric response to the st. patrick’s day space weather events in March 2012, 2013, and 2015 at southern low and middle latitudes. Journal of Geophysical Research Space Physics, 124, 584–602.

    Google Scholar 

  • Kumar, S., & Singh, A. K. (2011a). Storm time response of GPS-derived total electron content (TEC) during low solar active period at Indian low latitude station Varanasi. Astrophysics and Space Science, 331, 447–458.

    Google Scholar 

  • Kumar, S., & Singh, A. K. (2011b). GPS derived ionospheric TEC response to geomagnetic storm on 24 August 2005 at Indian low latitude stations. Advances in Space Research, 47, 710–717.

    CAS  Google Scholar 

  • Kumar, S., & Singh, A. (2012). Effect of solar flares on ionospheric TEC at Varanasi, near EIA crest during solar minimum period. Indian Journal Radio Space Physics, 41, 141–147.

  • Li, G., Ning, B., Otsuka, Y., Abdu, M. A., Abadi, P., Liu, Z., & Wan, W. (2021). Challenges to equatorial plasma bubble and ionospheric scintillation short-term forecasting and future aspects in east and southeast Asia. Surveys in Geophysics, 42, 201–238.

    CAS  Google Scholar 

  • Li, X., Wang, Y., Guo, J., et al. (2022). Solar energetic particles produced during two fast coronal mass ejections. Astrophysics Journal Letter, 928(1), L6.

    Google Scholar 

  • Liu, J., Zhao, B., & Liu, L. (2010). Time delay and duration of ionospheric total electron content responses to geomagnetic disturbances. Annales Geophysicae, 28, 795–805. https://doi.org/10.5194/angeo-28-795-2010

    Article  Google Scholar 

  • Mannucci, A., Tsurutani, B., Iijima, B., Komjathy, A., Saito, A., Gonzalez, W., Guarnieri, F., Kozyra, J., & Skoug, R. (2005). Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween storms.” Geophysical Research Letters. https://doi.org/10.1029/2004GL021467

    Article  Google Scholar 

  • Manoj, C., Maus, S., Lühr, H., & Alken, P. (2008). Penetration characteristics of the interplanetary electric field to the daytime equatorial ionosphere. Journal of Geophysical Research Space Physics. https://doi.org/10.1029/2008JA013381

    Article  Google Scholar 

  • Maruyama, T., Ma, G., & Tsugawa, T. (2013). Storm-induced plasma stream in the low-latitude to midlatitude ionosphere. Journal of Geophysical Research Space Physics, 118(9), 5931–5941.

    Google Scholar 

  • Meggs, R.W., Mitchell, C.N., & Smith, A.M. (2006). An investigation into the relationship between ionospheric scintillation and loss of lock in GNSS receivers. Technical report, BATH UNIV (UNITED KINGDOM).

  • Mendillo, M. (2006). Storms in the ionosphere: patterns and processes for total electron content. Reviews of Geophysics. https://doi.org/10.1029/2005RG000193

    Article  Google Scholar 

  • Mushini, S. C., Jayachandran, P., Langley, R., MacDougall, J., & Pokhotelov, D. (2012). Improved amplitude-and phase-scintillation indices derived from Improved amplitude-and phase-scintillation indices derived from wavelet detrended high-latitude gps data. GPS Solutions, 16(3), 363–373.

    Google Scholar 

  • Oladipo, O. A., Adeniyi, J. O., Olawepo, A. O., & Doherty, P. H. (2014). Large-scale ionospheric irregularities occurrence at Ilorin Nigeria. Space Weather, 12(5), 300–305.

    Google Scholar 

  • Oladipo, O. A., & Schüler, T. (2013a). Equatorial ionospheric irregularities using GPS TEC derived index. Journal of Atmospheric and Solar-Terrestrial Physics, 92, 78–82.

    Google Scholar 

  • Oladipo, O. A., & Schüler, T. (2013b). Magnetic storm effect on the occurrence of ionospheric irregularities at an equatorial station in the African sector. Annals of Geophysics, 56(5), A0565–A0565.

    Google Scholar 

  • Oljira, A. (2023). A study of solar flares and geomagnetic storms impact on total electron content over high-latitude region during July–November 2021: The case of Tromso Station. Advances in Space Research, 72(9), 3868–3881.

    Google Scholar 

  • Paschmann, G., Haaland, S., Treumann, R., & Treumann, R. A. (Eds.). (2003). Auroral Plasma Physics (Vol 15). Springer Science & Business Media.

    Google Scholar 

  • Pi, X., Mannucci, A. J., Lindqwister, U. J., & Ho, C. M. (1997). Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophysical Research Letters, 24, 2283–2286.

    CAS  Google Scholar 

  • Piersanti, M., Alberti, T., Bemporad, A., Berrilli, F., Bruno, R., Capparelli, V., Carbone, V., Cesaroni, C., Consolini, G., Cristaldi, A., Del Corpo, A., Del Moro, D., Di Matteo, S., Ermolli, I., Fineschi, S., Giannattasio, F., Giorgi, F., Giovannelli, L., Guglielmino, S. L., … Lichtenberger, J. (2017). Comprehensive analysis of the geoeffective solar event of 21 June 2015: Effects on the magnetosphere, plasmasphere, and ionosphere systems. Solar Physics, 292(11), 169. https://doi.org/10.1007/s11207-017-1186-0

    Article  Google Scholar 

  • Prikryl, P., Ghoddousi-Fard, R., Kunduri, B. S. R., Thomas, E. G., Coster, A. J., Jayachandran, P. T., & Danskin, D. W. (2013). GPS phase scintillation and proxy index at high latitudes during a moderate geomagnetic storm. Annales Geophysicae, 31, 805–816.

    Google Scholar 

  • Prolss, G. (1984). Local time dependence of magnetic storm effects on theatmosphere at middle latitudes. Annales Geophysicae, 2, 481–485.

    Google Scholar 

  • Prölss, G. W. (1993). On explaining the local time variation of ionospheric storm effects. Annales Geophysicae, 11, 1–9.

    Google Scholar 

  • Prolss, G. W. (1995). Ionospheric F-region storms. Handbook of Atmospheric Electrodynamics (Vol. 2, pp. 195–248). CRC Press.

    Google Scholar 

  • Rama Rao, P. V. S., Gopi Krishna, S., Vara Prasad, J., Prasad, S. N. V. S., Prasad, D. S. V. V. D., & Niranjan, K. (2009). Geomagnetic storm effects on GPS based navigation. Annales Geophysicae, 27(5), 2101–2110.

    Google Scholar 

  • Rastogi, R., Mullen, J., & MacKenzie, E. (1981). Effect of geomagnetic activity on equatorial VHF scintillations and spread-F. Journal of Geophysical Research, 86, 36613664.

    Google Scholar 

  • Ray, S., Roy, B., & Das, A. (2015). Occurrence of equatorial spread F during intensegeomagnetic storms. Radio Science. https://doi.org/10.1002/2014RS005422

    Article  Google Scholar 

  • Regi, M., Perrone, L., Del Corpo, A., Spogli, L., Sabbagh, D., Cesaroni, C., Alfonsi, L., Bagiacchi, P., Cafarella, L., Carnevale, G., & De Lauretis, M. (2022). Space weather effects observed in the Northern Hemisphere during November 2021 geomagnetic storm: the impacts on plasmasphere. Ionosphere and Thermosphere Systems. Remote Sensing, 14(22), 5765.

    Google Scholar 

  • Rishbeth, H., Fuller-Rowell, T. J., & Rodger, A. S. (1987). F-layer storms and thermospheric composition. Physica Scripta, 36, 327–336.

    Google Scholar 

  • Robbins, A. R., & Thomas, J. (1959). The disturbed f-layer over slough. Journal of Atmospheric and Terrestrial Physics, 15(1–2), 102–107.

    Google Scholar 

  • Sastri, J. H., Abdu, M. A., & Sobral, J. H. A. (1997). Response of equatorial ionosphere to episodes of asymmetric ring current activity. Annales Geophysicae, 15, 1316–1323.

    Google Scholar 

  • Sastri, J. H., Niranjan, K., & Subbarao, K. S. V. (2002). Response of the equatorial ionosphere in the Indian (midnight) sector to the severe magnetic storm of July 15, 2000. Geophysical Research Letters, 29(13), 1651. https://doi.org/10.1029/2002GL015133

    Article  Google Scholar 

  • Scherliess, L., & Fejer, B. (1997). Storm time dependence of equatorial disturbance dynamo zonal electric fields. Journal of Geophysical Research, 102, 24037–24046.

    Google Scholar 

  • Seemala, G. K., & Valladares, C. E. (2011). Statistics of total electron content depletions served over the South American continent for the year 2008. Radio Science, 46, RS5019. https://doi.org/10.1029/2011RS004722

    Article  Google Scholar 

  • Sobral, J. H. A., Abdu, M. A., Yamashita, C. S., Gonzalez, W. D., Clua, A., de Gonzalez, I. S., Batista, C. J., & Zamlutti, and B. T. Tsurutani,. (2001). Responses of the low-latitude ionosphere to very intense geomagnetic storms. Journal of Atmospheric and Solar-Terrestrial Physics, 63, 965–974.

    Google Scholar 

  • Somayajulu, V. (1998). Magnetosphere-ionosphere coupling. Proceedings Indian National Science Academy Part A, 64, 341–352.

    Google Scholar 

  • Spiro, R. W., Wolf, R. A., & Fejer, B. G. (1988). Penetration of high latitude-electric-field effects to low latitudes during SUNDIAL 1984. Annales Geophysicae, 6, 39–50.

    Google Scholar 

  • Spogli L, Sabbagh D, Cesaroni C, Regi M, Campuzano S A, Perrone L, Alfonsi L, Di M D, Lepidi S, & Marchetti D. (2019). The response of the Brazilian ionosphere to the August 2018 geomagnetic storm as probed by CSES and Swarm satellites and ground-based observations. AGU Fall Meeting Abstracts, NH52B-07.

  • Spogli, L., et al. (2016). Formation of ionospheric irregularities over Southeast Asia during the 2015 St. Patrick’s Day storm. Journal of Geophysical Research Space Physics, 121, 12211–12233. https://doi.org/10.1002/2016ja023222

    Article  Google Scholar 

  • Stankov, S. M., Stegen, K., & Warnant, R. (2010). Seasonal variations of storm-time TEC at European middle latitudes. Advances in Space Research, 46(10), 1318–1325.

    CAS  Google Scholar 

  • Tsunoda, R. (1985). Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pederson conductivity. Journal of Geophysical Research, 90, 447.

    Google Scholar 

  • Tsurutani, B. T., Gonzalez, W. D., Tang, F., Akasofu, S. I., & Smith, E. J. (1988). Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979). Journal of Geophysical Research Space Physics, 93, 8519–8531.

    Google Scholar 

  • Tsurutani, B., Mannucci, A., Iijima, B., Abdu, M. A., Sobral, J. H. A., Gonzalez, W., & Vasyliunas, V. M. (2004). Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields. Journal of Geophysical Research Space Physics, 109, A8.

    Google Scholar 

  • Tsurutani, B. T., Verkhoglyadova, O. P., Mannucci, A. J., Saito, A., Araki, T., Yumoto, K., et al. (2008). Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30–31 October 2003. Journal of Geophysical Research, 113, A05311.

    Google Scholar 

  • Tulasi Ram, S., Rao, P. V. S. R., Niranjan, K., et al. (2006). The role of post-sunset vertical drifts at the equator in predicting the onset of VHF scintillations during high and low sunspot activity years. Annales Geophysicae, 24, 1609–1616.

    Google Scholar 

  • Yue, J., & Wang, W. (2014). Changes of thermospheric composition and ionospheric density caused by quasi 2 day wave dissipation. Journal of Geophysical Research: Space Physics, 119(3), 2069–2078.

    CAS  Google Scholar 

  • Zhao, B., Wan, W., & Liu, L. (2005). Response of equatorial anomaly to the October-November 2003 superstorm. Annales Geophysicae, 23, 693–706. https://doi.org/10.5194/angeo-23-693-2005

    Article  Google Scholar 

  • Zhou, Y.-L., Luhr, H., Xiong, C., & Pfaff, R. F. (2016). Ionospheric storm effects and equatorial plasma irregularities during the 17–18 March 2015 event. Journal of Geophysical Research Space Physics, 121, 9146–9163. https://doi.org/10.1002/2016JA023122

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to extend their appreciation to the following organizations for easy access to their data: the International GNSS Service (IGS) (http://www.unavco.org/data/gps-gnss/data/, http://www.nignet.net/, the World Center for Geomagnetism, (WDC) Kyoto (http://wdc.kugi.kyoto-u.ac.jp0), the International Service of Geomagnetic Indices (ISGI), and the ACE science center (https://cdaweb.sci.gsfc.nasa.gov/index.html/).

Author information

Authors and Affiliations

Authors

Contributions

AO was generating the conceptualization of the study, drafting the manuscript, interpreting of data and did analysis. GM was assisting the scientific advisory on the interpretation of data. 

Corresponding author

Correspondence to Asebe Oljira Geleta.

Ethics declarations

Conflict of Interest

The authors declare that they have no any thing that may pose a conflict of interest (financial, personal or professional) in connection with this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geleta, A.O., Mengistu Tsidu, G. Ionospheric Response to Anomalous Geomagnetic Storm of 27 October 2021–05 November 2021. Pure Appl. Geophys. 181, 895–918 (2024). https://doi.org/10.1007/s00024-024-03434-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-024-03434-y

Keywords

Navigation