Skip to main content
Log in

Contemporary Materials and Their Application in the Construction of Special Engineering High-Temperature Objects

  • SCIENTIFIC RESEARCH AND DEVELOPMENT
  • Published:
Refractories and Industrial Ceramics Aims and scope

Under conditions of increasing loads and temperatures on engineering products the problem of selecting efficient materials is relevant, especially in relation to import substitution. One task for modern materials science is production of high-temperature special engineering components, including complex shapes. Metal and ceramic materials have a number of unique properties, which on the one hand determine prospects for their use in construction of special engineering products, and on the other hand cause a number of production problems, without whose solution exploitation of such products is extremely difficult. Analysis of advanced materials used for products of special high-temperature engineering, including production of various gas turbine engine components, is presented, as well as research results for development of materials with improved properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

References

  1. E. N. Kablov, N. V. Petrushin, and E. S. Elyutin, “Single-crystal heat-resistant alloys for gas turbine engines,” Vestnik MGTU im. N. É. Baumana, Ser. Mashinostroenie, No. 2, 38 – 52 (2011).

  2. M. P. Boyce, Gas Turbine Engineering Handbook. 2nd åd., Gulf Professional Publishing, Huston (2002).

  3. G. K. Salwan, R. Subbarao, and S. Mondal Salwan, “Comparison and selection of suitable materials applicable for gas turbine blades,” Materials Today : Proceedings, No. 46, 8864 – 8870 (2021). https://doi.org/10.1016/j.matpr.2021.05.003.

  4. J. Błachnio, M. Bogdan, and D. Zasada, “Increased temperature impact on durability of gas turbine blades,” Maintenance and Reliability, 19(1), 48 – 53 (2017).

    Article  Google Scholar 

  5. Z. Bojar, “Changes of microstructure of blades made of ŁK-4 alloy during long-term operation of aircraft turbine engine,” Military University of Technology Bulletin, No. 12, 51 – 64 (1988).

  6. F. I. Versnyder and M. E. Shank, “The development of columnar grain and single crystal high temperature materials through directional solidification,” Mater. Sci. Eng., 6(4), 213 – 247 (1970).

    Article  CAS  Google Scholar 

  7. H. Long, S. Mao, Y. Liu, Z. Zhang, and X. Han, “Microstructural and compositional design of Ni-based single crystalline superalloys — a review,” J. Alloys Comp., 743, 203 – 220 (2018).

    Article  CAS  Google Scholar 

  8. Nitin P. Padture, Maurice Gell, and Eric H. Jordan, “Thermal barrier coatings for gas turbine engine applications,” Science, 296(5566), 280 – 284 (2002).

    Article  ADS  PubMed  CAS  Google Scholar 

  9. S. Bose and J. De Masi-Marcin, “Thermal barrier coating experience in gas turbine engines at Pratt & Whitney,” Journal of Thermal Spray Technology, No. 6, 99 – 104 (1997).

  10. P. Rajeevalochanam and B. V. Ganesh Banda, “Mechanical design and analysis of ceramic stator blades for gas turbine stage,” Materials Today: Proceedings, 4(8), 8613 – 8623 (2017).

  11. Rao M. Nageswara, “Materials for gas turbines — an overview,” Advances in Gas Turbine Technology, 293 – 314 (2011).

  12. M. P. Brady, et al., “The development of alumina-forming austenitic stainless steels for high-temperature,” JOM: Journal of the Minerals, Metals & Materials Society, 60(7), 12 – 18 (2008).

    Article  CAS  Google Scholar 

  13. D. A. Alven, “Refractory-and precious metal-based superalloys,” JOM, 56(9), 27 (2004).

    Article  Google Scholar 

  14. Y. Yamabe-Mittarai, Y. Gu, C. Huang, et al., “Platinum-group-metals-based intermetallics as high temperature structural materials,” JOM, 56(9), 34 – 39 (2004).

    Article  Google Scholar 

  15. S. Vorberg, M. Wenderoth, B. Fischer, et al., “Pt-Al-Cr-Ni superalloys: heat treatment and microstructure,” JOM, 56(9), 40 – 43 (2004).

    Article  CAS  Google Scholar 

  16. M. Heilmeier, M. Krüger, H. Saage, et al., “Metallic materials for structural applications beyond nickel-based superalloys,” JOM, 61(7), 61 – 67 (2009).

    Article  Google Scholar 

  17. A. V. Sudarev and V. G. Konakov, “Additive preparation of ceramic gas turbine engines with an in-built electric generator,” Additivnye Tekhnologii, No. 2, 42 – 44 (2018).

  18. M. A. Zlenko M. V. Nagaitsev, and V. M. Dovbysh, Additive Technology in Engineering, Aid for Engineers [in Russian], GNTs RF FGUP NAMI, Moscow (2015).

  19. J. W. Yan, Z. Y. Zhang, and T. Kuriyagawa, “Mechanism for material removal in diamond turning of reaction-bonded silicon carbide,” International Journal of Machine Tools and Manufacture, 49(5), 366 – 374 (2009).

    Article  Google Scholar 

  20. D. L. Bourell, “Perspectives on additive manufacturing,” Annual Review of Materials Research, 46, 1 – 18 (2016).

    Article  ADS  CAS  Google Scholar 

  21. W. J. Sames, F. A. List, S. Pannala, et al., “The metallurgy and processing science of metal additive manufacturing,” International Materials Reviews, 61(5), 315 – 360 (2016).

    Article  ADS  CAS  Google Scholar 

  22. Yu. A. Morgunov and V. P. Saushkin, “”Additive technology for aerospace engineering,” Additive Technology, No. 1, 30 – 38 (2016).

  23. P. A. Kuznetsov, O. V. Vasil’eva, A. I. Telenkov, et al., “Additive technology based upon metallurgical powder materials for Russian industry,” Novosti. Mater. Nauka i Tewkhnika, No. 2, 4 – 10 (2015).

  24. V. A. Dresvyannikov, and E. P. Strakhov, “Classification of additive technologies and analysis of directions of their utilization,” Modeli, Sistemy, Seti v Ékononiki, Tekhnike in Obshchestve, No. 2, 16 – 28 (2018).

  25. E. V. Raevskii and A. L. Tsyganova, “Laser additive technology: application prospects,” Additivnye Tekhnologii, No. 1, 10 – 12 (2016).

  26. ITS 4 – 2015. Ceramic component production. Bureaux NDT, Moscow (2015).

  27. I. M. Petrov, “Main trends in the Russian powder market for additive technologies,” Additivnye Tekhnologii, No. 1, 24 – 26 (2019).

  28. O. L. Khasanov, É. S. Dvilis and A. A. Kachaev, Method of Collective Compaction of Nano- and Polydispersed Powders: Teaching Aid [in Russian], Izd. Tomsk. Politekh. Univ, Tomsk (2009).

  29. S. B. Rytsev, E. I. Filippov, and A. I. Timofeev, Russian patent 88592, MPK B22F 3/16. Device for levelling powder layers for sintering components of layer-by-layer synthesis, No. 2009132208/22; Claim 27.08.2009; Publ. 20.11.2009, Bull. No. 32.

  30. A. S. Tokacheva and I. A. Pavlova, Ceramic Technology for Electronic Industry Materials. In 2 vol. Part 1 [in Russian], Izd. Ural. Univ., Ekaterinburg (2019).

  31. X. Tian, D. Li, and J. G. Heinrich, “Rapid prototyping of porcelain products by layer-wise slurry deposition (LSD) and direct laser sintering,” Rapid Prototyping Journal, 18(5), 362 – 373 (2012).

    Article  Google Scholar 

  32. Thomas Muhler, Jurgen Heinrich, Cynthia M. Gomes, and Jens Gunster, “Slurry-based additive manufacturing of ceramics,” Int. J. Appl. Ceram. Technol., 12(1), 1 – 8 (2013).

    Google Scholar 

  33. Ch. W. Hull, US Pat. 5174943A. Method for Production of Three dimensional Objects by Stereolithography (1992).

  34. A. G. Netkachev, D. N. Bychkovskii, and A. V. Lopotova, Russian patent 2711324, MPK B 22C 9/02, B 22 F 3/105, B 22 F 7/00. Method for preparing ceramic molds of complex geometry for printing ceramic objects. No. 2018139753; Claim 12.11.2018; Publ. 16.01.2020, Bull. No. 2.

  35. L. M. Aksel’rod, M. Yu. Turchin, and I. N. Minnikhanov, Patent RU 2535704, MPK B 22 F 7/00, B 22 F 3/00, B 29 C 67/00, B 32 B 18/00. Refractory component three dimensional printing method, No 2013118068/05; Claim 18.04.2013; Publ. 20.12.2014, Bull. No. 35.

  36. P. Piterskov, D. Erezhin, and A. A. Gribovskii, “Study of the effect of ceramic 3D-printing regimes on thick-walled component shrinkage,” Nauch.-Tekhn. Vestnik Inform. Tekhnol., Mekhaniki i Optiki, 20(1), 52 – 57 (2020).

  37. Gu Dongdong, Yves-Christian Hagedorn, Wilhelm Meiners, et al., “Selective laser melting of in-situ TiC/Ti5Si3 composites with novel reinforcement architecture and elevated performance,” Surf. Coat. Technol., 205(10), 3285 – 3292 (2011).

    Article  Google Scholar 

  38. J.Wilkes, Y. Christian Hagedorn, S. Ocylok, et al., “Rapid manufacturing of ceramic parts by selective laser melting,” Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials, Part III, Ceramic Engineering and Science Proceedings, 31(8), 137 – 148 (2010).

  39. A. V. Soudarev, V. G. Konakov, N. F. Morozov, et al., “Novel shrinkage-free structural ceramic materials for gas turbine applications,” Proceedings of GT2008. 2008 ASME Turbo Expo Power for Land, Sea & Air, Berlin (2008).

  40. J. Timonen, M. Myllys, V. G. Konakov, et al., “Structure of a ceramic material developed by laser prototyping techniques,” Reviews on Advanced Materials Science, 292, 175 – 179 (2011).

    Google Scholar 

  41. S. N. Perevislov, M. V. Tomkovich, and A. S. Lysenkov, “Silicon carbide liquid-phase sintering with various activating agents,” Refract. Ind. Ceram., 59(5), 522 – 527 (2019).

    Article  CAS  Google Scholar 

  42. S. N. Perevislov, A. S. Lysenkov, and D. D. Titov, “Materials based on boron carbide obtained by reaction sintering,” IOP Conference Series: Materials Science and Engineering, 525(1), 012074 (2019).

    Article  CAS  Google Scholar 

  43. S. N. Perevislov, “Structure, properties, and applications of graphite-like hexagonal boron nitride,” Refract. Ind. Ceram., 60(3), 291 – 295 (2019).

    Article  CAS  Google Scholar 

  44. M. A. Markov, S. S. Ordan’yan, S. V. Vikhman, et al., “Preparation of MoSi2-SiC-ZrB2 structural ceramics by free sintering,” Refract. Ind. Ceram., 60(4), 385 – 388 (2019).

  45. I. A. Rumyantsev and S. N. Perevislov, “Lightweight composite cermets obtained by titanium-plating,” Refract. Ind. Ceram., 58(4), 405 – 409 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Kravchenko.

Additional information

Translated from Novye Ogneupory, No. 5, pp. 69 – 79, May, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyakov, A.N., Markov, M.A., Kravchenko, I.N. et al. Contemporary Materials and Their Application in the Construction of Special Engineering High-Temperature Objects. Refract Ind Ceram 64, 256–264 (2023). https://doi.org/10.1007/s11148-024-00835-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-024-00835-3

Keywords

Navigation