Skip to main content
Log in

On Some Estimate for the Norm of an Interpolation Projector

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

Let \({{Q}_{n}}{{ = [0,1]}^{n}}\) be the unit cube in \({{\mathbb{R}}^{n}}\) and let \(C({{Q}_{n}})\) be the space of continuous functions \(f:{{Q}_{n}} \to \mathbb{R}\) with the norm \({{\left| {\left| f \right|} \right|}_{{C({{Q}_{n}})}}}: = \mathop {\max }\nolimits_{x \in {{Q}_{n}}} \left| {f(x)} \right|.\) By \({{\Pi }_{1}}\left( {{{\mathbb{R}}^{n}}} \right)\) denote the set of polynomials of degree \( \leqslant 1\), i. e., the set of linear functions on \({{\mathbb{R}}^{n}}\). The interpolation projector \(P:C({{Q}_{n}}) \to {{\Pi }_{1}}({{\mathbb{R}}^{n}})\) with the nodes \({{x}^{{(j)}}} \in {{Q}_{n}}\) is defined by the equalities \(Pf\left( {{{x}^{{(j)}}}} \right) = f\left( {{{x}^{{(j)}}}} \right)\), \(j = 1,\) \( \ldots ,\) \(n + 1\). Let \({{\left| {\left| P \right|} \right|}_{{{{Q}_{n}}}}}\) be the norm of \(P\) as an operator from \(C({{Q}_{n}})\) to \(C({{Q}_{n}})\). If \(n + 1\) is an Hadamard number, then there exists a nondegenerate regular simplex having the vertices at vertices of \({{Q}_{n}}\). We discuss some approaches to get inequalities of the form \({{\left| {\left| P \right|} \right|}_{{{{Q}_{n}}}}} \leqslant c\sqrt n \) for the norm of the corresponding projector \(P\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Barba, G., Intorno al teorema di Hadamard sui determinanti a valore massimo, Glornale Mat. Battaglini, 1933, no. 3, pp. 70–86.

  2. Tót, L.F., Regular Figures, New York: Macmillan/Pergamon, 1964.

    Google Scholar 

  3. Hadamard, J., Résolution d’une question relative aux déterminants, Bull. Sci. Math., 1893, vol. 17, no. 2, pp. 240–246.

    Google Scholar 

  4. Hall, M. Jr., Combinatorial Theory, Waltham, Mass.: Blaisdall Publishing Company, 1967.

    Google Scholar 

  5. Horadam, K.J., Hadamard Matrices and Their Applications, Princeton Univ. Press, 2007. https://doi.org/10.1515/9781400842902

    Book  Google Scholar 

  6. Hudelson, M., Klee, V., and Larman, D., Largest j-simplices in d-cubes: Some relatives of the hadamard maximum determinant problem, Linear Algebra its Appl., 1996, vols. 241–243, pp. 519–598. https://doi.org/10.1016/0024-3795(95)00541-2

  7. Kudryavcev, I.S., Ozerova, E.A., and Ukhalov, A.Yu., New estimates for the norms of minimal projectors, Sovremennye problemy matematiki i informatiki (Modern Problems in Mathematics and Informatics), Yaroslavl: Yaroslavl. Gos. Univ. im. P.G. Demidova, 2017, vol. 17, pp. 74–81.

    Google Scholar 

  8. Manjhi, P.K. and Rana, M.K., Some new examples of circulant partial Hadamard matrices of type 4 – H(k × n), Adv. Appl. Math. Sci., 2022, vol. 21, no. 5, pp. 2559–2564.

    Google Scholar 

  9. Nevskii, M.V., Estimates for minimal norm of a projector in linear interpolation over vertices of an n-dimensional cube, Model. Anal. Inf. Syst., 2003, vol. 10, no. 1, pp. 9–19.

    Google Scholar 

  10. Nevskii, M.V., Minimal projectors and largest simplices, Model. Anal. Inf. Syst., 2007, vol. 14, no. 1, pp. 3–10.

    Google Scholar 

  11. Nevskii, M.V., On a certain relation for the minimal norm of an interpolation projector, Model. Anal. Inf. Syst., 2009, vol. 16, no. 1, pp. 24–43.

    Google Scholar 

  12. Nevskii, M.V., Geometricheskie otsenki v polinomialnoi interpolyatsii (Geometric Estimates in Polynomial Interpolation), Yaroslavl: Yaroslavl. Gos. Univ. im. P.G. Demidova, 2012.

  13. Nevskii, M.V. and Ukhalov, A.Yu., On optimal interpolation by linear functions on n-dimensional cube, Autom. Control Comput. Sci., 2018, vol. 52, no. 7, pp. 828–842. https://doi.org/10.3103/S0146411618070283

    Article  Google Scholar 

  14. Nevskii, M.V. and Ukhalov, A.Yu., Linear interpolation on a Euclidean ball in ℝn , Autom. Control Comput. Sci., 2020, vol. 54, no. 7, pp. 601–614. https://doi.org/10.3103/S0146411620070172

    Article  Google Scholar 

  15. Slepian, D., The content of some extreme simplexes, Pac. J. Math., 1969, vol. 31, no. 3, pp. 795–808. https://doi.org/10.2140/pjm.1969.31.795

    Article  MathSciNet  Google Scholar 

  16. Vandev, D., A minimal volume ellipsoid around a simplex, C. R. Acad. Bulg. Sci., 1992, vol. 45, no. 6, pp. 37–40.

    MathSciNet  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Nevskii.

Ethics declarations

As author of this work, I declare that I have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhail Nevskii On Some Estimate for the Norm of an Interpolation Projector. Aut. Control Comp. Sci. 57, 718–726 (2023). https://doi.org/10.3103/S0146411623070106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411623070106

Keywords:

Navigation