Skip to main content
Log in

Gauge coupling unification in the flipped \(E_8\) GUT

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The gauge coupling unification is investigated at the classical level under the assumptions that the gauge symmetry breaking chain is \(E_8\to E_7\times U_1 \to E_6\times U_1 \to SO_{10}\times U_1 \to SU_5 \times U_1 \to SU_3 \times SU_2 \times U_1\) and only components of the representations 248 of \(E_8\) can acquire vacuum expectation values. We demonstrate that there are several options for the relations between the gauge couplings of the resulting theory, but the only symmetry breaking pattern corresponds to \(\alpha_3=\alpha_2\) and \(\sin^2\theta_\mathrm{W}=3/8\). Moreover, only for this option does the particle content of the resulting theory include all MSSM superfields. It is also noted that this symmetry breaking pattern corresponds to the case where all representation that acquire vacuum expectation values have the minimal absolute values of the relevant \(U_1\) charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Notes

  1. Standardly (see, e.g., [16]), they contain the charge-conjugate right fermions of the Standard Model and the charge-conjugate right neutrinos.

  2. We note that due to the \(U_1\) factors, this chain is different from the one considered in [116].

  3. We note that in this paper, we do not consider the dynamical mechanism that endows the scalar field(s) with vacuum expectation values (42) in the 248 representation, and discuss only the form of vacuum expectation values that ensure the appropriate symmetry breaking.

  4. Gauge fields corresponding to the \(U_1\) groups are considered separately.

  5. To avoid supersymmetry breaking by the \(D\)-term corresponding to the \(U_1\) group, the part \(1(-1,-3)\) of the representation \(56(-1)\) should also acquire the same vacuum expectation value. However, in this paper, we do not consider the dynamics of the theory and do not discuss the corresponding issues.

References

  1. J. A. Minahan, P. Ramond, and R. C. Warner, “Comment on anomaly cancellation in the standard model,” Phys. Rev. D, 41, 715–716 (1990).

    Article  ADS  CAS  Google Scholar 

  2. A. Bilal, “Lectures on anomalies,” arXiv: 0802.0634.

  3. H. Georgi and S. L. Glashow, “Unity of all elementary-particle forces,” Phys. Rev. Lett., 32, 438–441 (1974).

    Article  ADS  CAS  Google Scholar 

  4. R. N. Mohapatra, Unification and Supersymmetry. The Frontiers of Quark-Lepton Physics: The Frontiers of Quark-Lepton Physics, Springer, New York (2002).

    Google Scholar 

  5. J. R. Ellis, S. Kelley, and D. V. Nanopoulos, “Probing the desert using gauge coupling unification,” Phys. Lett. B, 260, 131–137 (1991).

    Article  ADS  CAS  Google Scholar 

  6. U. Amaldi, W. de Boer, and H. Furstenau, “Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP,” Phys. Lett. B, 260, 447 (1991).

    Article  ADS  CAS  Google Scholar 

  7. P. Langacker and M. X. Luo, “Implications of precision electroweak experiments for \(m_t\), \(\rho_{0}\), \(\sin^2\theta_W\), and grand unification,” Phys. Rev. D, 44, 817–822 (1991).

    Article  ADS  CAS  Google Scholar 

  8. S. Dimopoulos and H. Georgi, “Softly broken supersymmetry and \(SU(5)\),” Nucl. Phys. B, 193, 150–162 (1981).

    Article  ADS  Google Scholar 

  9. N. Sakai, “Naturalness in supersymmetric GUTS,” Z. Phys. C, 11, 153–157 (1981).

    Article  ADS  CAS  Google Scholar 

  10. R. L. Workman, V. D. Burkert, V. Crede et al. [Particle Data Group], “Review of Particle Physics,” Prog. Theor. Exp. Phys., 2022, 083C01, 2270 pp. (2022).

    Article  Google Scholar 

  11. Y. Kawamura, “Triplet-doublet splitting, proton stability and extra dimension,” Prog. Theor. Phys., 105, 999–1006 (2001); arXiv: hep-ph/0012125.

    Article  ADS  CAS  Google Scholar 

  12. G. Altarelli and F. Feruglio, “\(SU(5)\) grand unification in extra dimensions and proton decay,” Phys. Lett. B, 511, 257–264 (2001); arXiv: hep-ph/0102301.

    Article  ADS  CAS  Google Scholar 

  13. L. J. Hall and Y. Nomura, “Gauge unification in higher dimensions,” Phys. Rev. D, 64, 055003, 10 pp. (2001); arXiv: hep-ph/0103125.

    Article  ADS  Google Scholar 

  14. A. B. Kobakhidze, “Proton stability in TeV scale GUTs,” Phys. Lett. B, 514, 131–138 (2001); arXiv: hep-ph/0102323.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. S. Raby, Supersymmetric Grand Unified Theories: From Quarks to Strings via SUSY GUTs (Lecture Notes in Physics, Vol. 939), Springer, Cham (2017).

    Google Scholar 

  16. T. P. Cheng and L. F. Li, Gauge Theory of Elementary Particle Physics, Oxford Univ. Press, New York (1984).

    Google Scholar 

  17. R. Slansky, “Group theory for unified model building,” Phys. Rep., 79, 1–128 (1981).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. H. Fritzsch and P. Minkowski, “Unified interactions of leptons and hadrons,” Ann. Phys., 93, 193–266 (1975).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  19. H. Georgi, “The state of the art-gauge theories,” AIP Conf. Proc., 23, 575–582 (1975).

    Article  ADS  CAS  Google Scholar 

  20. A. S. Joshipura, B. P. Kodrani, and K. M. Patel, “Fermion masses and mixings in a \(\mu\)-\(\tau\) symmetric \(SO(10)\),” Phys. Rev. D, 79, 115017, 11 pp. (2009); arXiv: 0903.2161.

    Article  ADS  Google Scholar 

  21. K. M. Patel, “An S\(O(10) \times S_4\times Z_n\) model of quark-lepton complementarity,” Phys. Lett. B, 695, 225–230 (2011); arXiv: 1008.5061.

    Article  ADS  CAS  Google Scholar 

  22. A. S. Joshipura and K. M. Patel, “Fermion masses in \(SO(10)\) models,” Phys. Rev. D, 83, 095002, 17 pp. (2011); arXiv: 1102.5148.

    Article  ADS  Google Scholar 

  23. V. De Romeri, M. Hirsch, and M. Malinský, “Soft masses in SUSY \(SO(10)\) GUTs with low intermediate scales,” Phys. Rev. D, 84, 053012, 15 pp. (2011); arXiv: 1107.3412.

    Article  ADS  Google Scholar 

  24. K. S. Babu, I. Gogoladze, P. Nath, and R. M. Syed, “Variety of \(SO(10)\) GUTs with natural doublet-triplet splitting via the missing partner mechanism,” Phys. Rev. D, 85, 0750022, 15 pp. (2012); arXiv: 1112.5387.

    Article  Google Scholar 

  25. K. S. Babu and R. N. Mohapatra, “Coupling unification, GUT scale baryogenesis and neutron-antineutron oscillation in \(SO(10)\),” Phys. Lett. B, 715, 328–334 (2012); arXiv: 1206.5701.

    Article  ADS  CAS  Google Scholar 

  26. R. L. Awasthi, M. K. Parida, and S. Patra, “Neutrino masses, dominant neutrinoless double beta decay, and observable lepton flavor violation in left-right models and \(\mathrm{SO}(10)\) grand unification with low mass \( W_R\), \(Z_R\) bosons,” JHEP, 08, 122, 49 pp. (2013); arXiv: 1302.0672.

    Article  ADS  Google Scholar 

  27. G. Altarelli and D. Meloni, “A non supersymmetric \(\mathrm{SO}(10)\) grand unified model for all the physics below \(M_{GUT}\),” JHEP, 08, 021, 21 pp. (2013); arXiv: 1305.1001.

    Article  ADS  Google Scholar 

  28. Y. Mambrini, N. Nagata, K. A. Olive, and J. Zheng, “Vacuum stability and radiative electroweak symmetry breaking in an \(\mathrm{SO}(10)\) dark matter model,” Phys. Rev. D, 93, 111703, 5 pp. (2016); arXiv: 1602.05583.

    Article  ADS  Google Scholar 

  29. K. S. Babu, B. Bajc, and S. Saad, “Yukawa sector of minimal \(SO(10)\) unification,” JHEP, 02, 136, 25 pp. (2017); arXiv: 1612.04329.

    Article  ADS  Google Scholar 

  30. F. Björkeroth, F. J. de Anda, S. F. King, and E. Perdomo, “A natural \(S_{4} \times SO(10)\) model of flavour,” JHEP, 10, 148, 28 pp. (2017); arXiv: 1705.01555.

    Article  ADS  Google Scholar 

  31. F. F. Deppisch, T. E. Gonzalo, and L. Graf, “Surveying the \(\mathrm{SO}(10)\) model landscape: The left-right symmetric case,” Phys. Rev. D, 96, 055003, 19 pp. (2017); arXiv: 1705.05416.

    Article  ADS  Google Scholar 

  32. J. Chakrabortty, R. Maji, S. K. Patra, T. Srivastava, and S. Mohanty, “Roadmap of left-right models based on GUTs,” Phys. Rev. D, 97, 095010, 49 pp. (2018); arXiv: 1711.11391.

    Article  ADS  CAS  Google Scholar 

  33. S. Antusch, C. Hohl, S. F. King, and V. Susič, “Non-universal \(Z'\) from \(\mathrm{SO}(10)\) GUTs with vector-like family and the origin of neutrino masses,” Nucl. Phys. B, 934, 578–605 (2018); arXiv: 1712.05366.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  34. R. N. Mohapatra and M. Severson, “Leptonic \(CP\) violation and proton decay in SUSY \(\mathrm{SO}(10)\),” JHEP, 09, 119, 32 pp. (2018); arXiv: 1805.05776.

    Article  ADS  Google Scholar 

  35. K. S. Babu, B. Bajc, and S. Saad, “Resurrecting minimal Yukawa sector of SUSY \(\mathrm{SO}(10)\),” JHEP, 10, 135, 25 pp. (2018); arXiv: 1805.10631.

    Article  ADS  Google Scholar 

  36. S. A. R. Ellis, T. Gherghetta, K. Kaneta, and K. A. Olive, “New weak-scale physics from \(\mathrm{SO}(10)\) with high-scale supersymmetry,” Phys. Rev. D, 98, 055009, 22 pp. (2018); arXiv: 1807.06488.

    Article  ADS  CAS  Google Scholar 

  37. S. M. Boucenna, T. Ohlsson, and M. Pernow, “A minimal non-supersymmetric \(\mathrm{SO}(10)\) model with Peccei–Quinn symmetry,” Phys. Lett. B, 792, 251–257 (2019); arXiv: 1812.10548.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  38. K. S. Babu, T. Fukuyama, S. Khan, and S. Saad, “Peccei–Quinn symmetry and nucleon decay in renormalizable SUSY \(SO\)(10),” JHEP, 06, 045, 33 pp. (2019); arXiv: 1812.11695.

    Article  ADS  Google Scholar 

  39. T. Ohlsson and M. Pernow, “Fits to non-supersymmetric \(\mathrm{SO}(10)\) models with type I and II seesaw mechanisms using renormalization group evolution,” JHEP, 06, 085, 21 pp. (2019); arXiv: 1903.08241.

    Article  ADS  MathSciNet  Google Scholar 

  40. N. Haba, Y. Mimura, and T. Yamada, “Detectable dimension-6 proton decay in SUSY \(\mathrm{SO}(10)\) GUT at Hyper-Kamiokande,” JHEP, 07, 155, 14 pp. (2019); arXiv: 1904.11697.

    Article  ADS  Google Scholar 

  41. J. Chakrabortty, R. Maji, and S. F. King, “Unification, proton decay, and topological defects in non-SUSY GUTs with thresholds,” Phys. Rev. D, 99, 095008, 34 pp. (2019); arXiv: 1901.05867.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  42. M. Chakraborty, M. K. Parida, and B. Sahoo, “Triplet leptogenesis, type-II seesaw dominance, intrinsic dark matter, vacuum stability and proton decay in minimal \(\mathrm{SO}(10)\) breakings,” J. Cosmol. Astropart. Phys., 2020, 049, 55 pp. (2020); arXiv: 1906.05601.

    Article  CAS  Google Scholar 

  43. Y. Hamada, M. Ibe, Y. Muramatsu, K.-Y. Oda, and N. Yokozaki, “Proton decay and axion dark matter in \(SO\)(10) grand unification via minimal left-right symmetry,” Eur. Phys. J. C, 80, 482, 13 pp. (2020); arXiv: 2001.05235.

    Article  ADS  CAS  Google Scholar 

  44. T. Ohlsson, M. Pernow, and E. Sönnerlind, “Realizing unification in two different \(\mathrm{SO}(10)\) models with one intermediate breaking scale,” Eur. Phys. J. C, 80, 1089, 7 pp. (2020); arXiv: 2006.13936.

    Article  ADS  CAS  Google Scholar 

  45. J. Chakrabortty, G. Lazarides, R. Maji, and Q. Shafi, “Primordial monopoles and strings, inflation, and gravity waves,” JHEP, 02, 114, 34 pp. (2021); arXiv: 2011.01838.

    Article  ADS  MathSciNet  Google Scholar 

  46. S. F. King, S. Pascoli, J. Turner, and Y.-L. Zhou, “Confronting \(\mathrm{SO}(10)\) GUTs with proton decay and gravitational waves,” JHEP, 10, 225, 38 pp. (2021); arXiv: 2106.15634.

    Article  ADS  Google Scholar 

  47. G. J. Ding, S. F. King, and J. N. Lu, “\(\mathrm{SO}(10)\) models with \(A_{4}\) modular symmetry,” JHEP, 11, 007, 42 pp. (2021); arXiv: 2108.09655.

    Article  ADS  Google Scholar 

  48. V. S. Mummidi and K. M. Patel, “Leptogenesis and fermion mass fit in a renormalizable \(SO(10)\) model,” JHEP, 12, 042, 25 pp. (2021); arXiv: 2109.04050.

    Article  ADS  MathSciNet  Google Scholar 

  49. G.-C. Cho, K. Hayami, and N. Okada, “\(\mathrm{SO}(10)\) grand unification with minimal dark matter and color octet scalars,” Phys. Rev. D, 105, 015027, 9 pp. (2022); arXiv: 2110.03884.

    Article  ADS  CAS  Google Scholar 

  50. K. M. Patel and S. K. Shukla, “Anatomy of scalar mediated proton decays in \(\mathrm{SO}(10)\) models,” JHEP, 08, 042, 32 pp. (2022); arXiv: 2203.07748.

    Article  ADS  MathSciNet  Google Scholar 

  51. A. Held, J. Kwapisz, and L. Sartore, “Grand unification and the Planck scale: an \(\mathrm{SO}(10)\) example of radiative symmetry breaking,” JHEP, 08, 122, 68 pp. (2022); arXiv: 2204.03001.

    Article  ADS  MathSciNet  Google Scholar 

  52. P. Sahu, A. Bhatta, R. Mohanta, S. Singirala, and S. Patra, “Flavour anomalies and dark matter assisted unification in \(\mathrm{SO}(10)\) GUT,” JHEP, 11, 029, 39 pp. (2022); arXiv: 2204.06392.

    Article  ADS  MathSciNet  Google Scholar 

  53. R. Maji and Q. Shafi, “Monopoles, strings and gravitational waves in non-minimal inflation,” J. Cosmol. Astropart. Phys., 03, 007, 19 pp. (2023); arXiv: 2208.08137.

    Article  ADS  MathSciNet  Google Scholar 

  54. G. Lazarides, R. Maji, R. Roshan, and Q. Shafi, “A predictive SO(10) model,” J. Cosmol. Astropart. Phys., 12, 009, 32 pp. (2022); arXiv: 2210.03710.

    Article  ADS  MathSciNet  Google Scholar 

  55. N. Haba and T. Yamada, “Conditions for suppressing dimension-five proton decay in renormalizable SUSY \(\mathrm{SO}(10)\) GUT,” JHEP, 02, 148, 27 pp. (2023); arXiv: 2211.10091.

    Article  ADS  Google Scholar 

  56. K. M. Patel and S. K. Shukla, “Spectrum of color sextet scalars in realistic \(SO(10)\) GUT,” Phys. Rev. D, 107, 055008, 15 pp. (2023); arXiv: 2211.11283.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  57. K. M. Patel, “Minimal spontaneous \(CP\)-violating GUT and predictions for leptonic \(CP\) phases,” Phys. Rev. D, 107, 075041, 7 pp. (2023); arXiv: 2212.04095.

    Article  ADS  CAS  Google Scholar 

  58. S. M. Barr, “A new symmetry breaking pattern for \(\mathrm{SO}(10)\) and proton decay,” Phys. Lett. B, 112, 219–222 (1982).

    Article  ADS  Google Scholar 

  59. I. Antoniadis, J. R. Ellis, J. S. Hagelin, and D. V. Nanopoulos, “Supersymmetric flipped \(\mathrm{SU}(5)\) revitalized,” Phys. Lett. B, 194, 231–235 (1987).

    Article  ADS  CAS  Google Scholar 

  60. B. A. Campbell, J. Ellis, J. S. Hagelin, D. V. Nanopoulos, and K. A. Olive, “Supercosmology revitalized,” Phys. Lett. B, 197, 355–362 (1987).

    Article  ADS  CAS  Google Scholar 

  61. J. Ellis, J. S. Hagelin, S. Kelley, and D. V. Nanopoulos, “Aspects of the flipped unification of strong, weak and electromagnetic interactions,” Nucl. Phys. B, 311, 1–34 (1988).

    Article  ADS  Google Scholar 

  62. J. Ellis, M. A. G. Garcia, N. Nagata, D. V. Nanopoulos, and K. A. Olive, “Proton decay: flipped vs. unflipped \(\mathrm{SU}(5)\),” JHEP, 05, 021, 26 pp. (2020); arXiv: 2003.03285.

    Article  ADS  Google Scholar 

  63. M. Mehmood, M. U. Rehman, and Q. Shafi, “Observable proton decay in flipped \(\mathrm{SU}(5)\),” JHEP, 02, 181, 25 pp. (2021); arXiv: 2010.01665.

    Article  ADS  Google Scholar 

  64. N. Haba and T. Yamada, “Moderately suppressed dimension-five proton decay in a flipped \(\mathrm{SU}(5)\) model,” JHEP, 01, 061, 18 pp. (2022); arXiv: 2110.01198.

    Article  ADS  MathSciNet  Google Scholar 

  65. J. Ellis, J. L. Evans, N. Nagata, D. V. Nanopoulos, and K. A. Olive, “Flipped \(\mathrm{SU}(5)\) GUT phenomenology: proton decay and \(g_\mu - 2\),” Eur. Phys. J. C, 81, 1109, 18 pp. (2021); arXiv: 2110.06833.

    Article  ADS  CAS  Google Scholar 

  66. A. Masiero, D. V. Nanopoulos, K. Tamvakis, and T. Yanagida, “Naturally massless Higgs doublets in supersymmetric \(\mathrm{SU}(5)\),” Phys. Lett. B, 115, 380–384 (1982).

    Article  ADS  Google Scholar 

  67. B. Grinstein, “A supersymmetric \(\mathrm{SU}(5)\) gauge theory with no gauge hierarchy problem,” Nucl. Phys. B, 206, 387–396 (1982).

    Article  ADS  Google Scholar 

  68. J. Hisano, T. Moroi, K. Tobe, and T. Yanagida, “Suppression of proton decay in the missing-partner model for supersymmetric \(\mathrm{SU}(5)\) GUT,” Phys. Lett. B, 342, 138–144 (1995); arXiv: hep-ph/9406417.

    Article  ADS  CAS  Google Scholar 

  69. I. Antoniadis, J. Ellis, J. S. Hagelin, and D. V. Nanopoulos, “GUT model-building with fermionic four-dimensional strings,” Phys. Lett. B, 205, 459–465 (1988).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  70. I. Antoniadis, J. Ellis, J. S. Hagelin, and D. V. Nanopoulos, “The flipped \(\mathrm{SU}(5) \times \mathrm{U}(1)\) string model revamped,” Phys. Lett. B, 231, 65–74 (1989).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  71. C. S. Huang, T. Li, C. Liu, J. P. Shock, F. Wu, and Y. L. Wu, “Embedding flipped \(\mathrm{SU}(5)\) into \(\mathrm{SO}(10)\),” JHEP, 10, 035, 25 pp. (2006); arXiv: hep-ph/0606087.

    Article  ADS  MathSciNet  Google Scholar 

  72. Y.-C. Chung, “On global flipped \(\mathrm{SU}(5)\) GUTs in F-theory,” JHEP, 03, 126, 37 pp. (2011); arXiv: 1008.2506.

    Article  ADS  MathSciNet  Google Scholar 

  73. E. Kuflik and J. Marsano, “Comments on flipped \(\mathrm{SU}(5)\) (and F-theory),” JHEP, 03, 020, 35 pp. (2011); arXiv: 1009.2510.

    Article  ADS  MathSciNet  Google Scholar 

  74. J. Ellis, A. Mustafayev, and K. A. Olive, “Constrained supersymmetric flipped \(\mathrm{SU}(5)\) GUT phenomenology,” Eur. Phys. J. C, 71, 1689, 15 pp. (2011); arXiv: 1103.5140.

    Article  ADS  Google Scholar 

  75. J. Ellis, M. A. G. Garcia, N. Nagata, D. V. Nanopoulos, and K. A. Olive, “Symmetry breaking and reheating after inflation in no-scale flipped \(\mathrm{SU}(5)\),” J. Cosmol. Astropart. Phys., 2019, 009–009 (2019); arXiv: 1812.08184.

    Article  Google Scholar 

  76. J. Ellis, M. A. G. Garcia, N. Nagata, D. V. Nanopoulos, and K. A. Olive, “Cosmology with a master coupling in flipped \(SU(5) \times U(1)\): the \(\lambda_6\) universe,” Phys. Lett. B, 797, 134864, 5 pp. (2019); arXiv: 1906.08483.

    Article  MathSciNet  CAS  Google Scholar 

  77. K. Hamaguchi, S. Hor, and N. Nagata, “\(R\)-symmetric flipped \(\mathrm{SU}(5)\),” JHEP, 11, 140, 30 pp. (2020); arXiv: 2008.08940.

    Article  ADS  MathSciNet  Google Scholar 

  78. D. S. Korneev, D. V. Plotnikov, K. V. Stepanyantz, and N. A. Tereshina, “The NSVZ relations for \(\mathcal{N} = 1\) supersymmetric theories with multiple gauge couplings,” JHEP, 10, 046, 45 pp. (2021); arXiv: 2108.05026.

    Article  ADS  MathSciNet  Google Scholar 

  79. G. Charalampous, S. F. King, G. K. Leontaris, and Y. L. Zhou, “Flipped \(SU(5)\) with modular \(A_4\) symmetry,” Phys. Rev. D, 104, 115015, 16 pp. (2021); arXiv: 2109.11379.

    Article  ADS  CAS  Google Scholar 

  80. I. Antoniadis, D. V. Nanopoulos, and J. Rizos, “Particle physics and cosmology of the string derived no-scale flipped \(SU(5)\),” Eur. Phys. J. C, 82, 377, 23 pp. (2022); arXiv: 2112.01211.

    Article  ADS  CAS  Google Scholar 

  81. V. Basiouris and G. K. Leontaris, “Sterile neutrinos, \(0\nu \beta \beta \) decay and the W-boson mass anomaly in a flipped \(SU(5)\) from F-theory,” Eur. Phys. J. C, 82, 1041, 23 pp. (2022); arXiv: 2205.00758.

    Article  ADS  CAS  Google Scholar 

  82. X. K. Du and F. Wang, “Flavor structures of quarks and leptons from flipped \(\mathrm{SU}(5)\) GUT with \(A_{4}\) modular flavor symmetry,” JHEP, 01, 036, 50 pp. (2023); arXiv: 2209.08796.

    Article  ADS  Google Scholar 

  83. F. Gürsey, P. Ramond, and P. Sikivie, “A universal gauge theory model based on \(E_6\),” Phys. Lett. B, 60, 177–180 (1976).

    Article  ADS  Google Scholar 

  84. S. F. King, S. Moretti, and R. Nevzorov, “A review of the exceptional supersymmetric standard model,” Symmetry, 12, 557, 34 pp. (2020); arXiv: 2002.02788.

    Article  ADS  Google Scholar 

  85. P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten, “Vacuum configurations for superstrings,” Nucl. Phys. B, 258, 46–74 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  86. E. Witten, “Symmetry breaking patterns in superstring models,” Nucl. Phys. B, 258, 75–100 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  87. M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory, Vol. 2: Loop Amplitudes, Anomalies and Phenomenology, Cambridge Univ. Press, Cambridge (1998).

    Google Scholar 

  88. F. Caravaglios and S. Morisi, “Fermion masses in \(E_6\) grand unification with family permutation symmetries,” arXiv: hep-ph/0510321.

  89. B. Stech and Z. Tavartkiladze, “Generation symmetry and \(E_6\) unification,” Phys. Rev. D, 77, 076009, 16 pp. (2008); arXiv: 0802.0894.

    Article  ADS  Google Scholar 

  90. S. F. King, R. Luo, D. J. Miller, and R. Nevzorov, “Leptogenesis in the exceptional supersymmetric standard model: flavour dependent lepton asymmetries,” JHEP, 12, 042, 40 pp. (2008); arXiv: 0806.0330.

    Article  ADS  Google Scholar 

  91. P. Athron, S. F. King, D. J. Miller, S. Moretti, and R. Nevzorov, “Predictions of the constrained exceptional supersymmetric standard model,” Phys. Lett. B, 681, 448–456 (2009); arXiv: 0901.1192.

    Article  Google Scholar 

  92. P. Athron, S. F. King, D. J. Miller, S. Moretti, and R. Nevzorov, “Constrained exceptional supersymmetric standard model,” Phys. Rev. D, 80, 035009, 31 pp. (2009); arXiv: 0904.2169.

    Article  ADS  Google Scholar 

  93. C. R. Das, L. V. Laperashvili, and A. Tureanu, “Superstring-inspired \(E_6\) unification, shadow theta-particles and cosmology,” Phys. Part. Nucl., 41, 965–968 (2010); arXiv: 1012.0624.

    Article  Google Scholar 

  94. J. P. Hall, S. F. King, R. Nevzorov, S. Pakvasa, and M. Sher, “Novel Higgs decays and dark matter in the exceptional supersymmetric standard model,” Phys. Rev. D, 83, 075013, 20 pp. (2011); arXiv: 1012.5114.

    Article  ADS  Google Scholar 

  95. F. Wang, “Supersymmetry breaking scalar masses and trilinear soft terms from high-dimensional operators in \(E_6\) SUSY GUT,” Nucl. Phys. B, 851, 104–142 (2011); arXiv: 1103.0069.

    Article  ADS  Google Scholar 

  96. R. Nevzorov and S. Pakvasa, “Exotic Higgs decays in the \(E_6\) inspired SUSY models,” Phys. Lett. B, 728, 210–215 (2014); arXiv: 1308.1021.

    Article  ADS  CAS  Google Scholar 

  97. P. Athron, M. Mühlleitner, R. Nevzorov, and A. G. Williams, “Non-standard Higgs decays in \(\mathrm{U}(1)\) extensions of the MSSM,” JHEP, 01, 153, 37 pp. (2015); arXiv: 1410.6288.

    Article  ADS  Google Scholar 

  98. R. Nevzorov and A. W. Thomas, “\(E_6\) inspired composite Higgs model,” Phys. Rev. D, 92, 075007, 19 pp. (2015); arXiv: 1507.02101.

    Article  ADS  Google Scholar 

  99. P. Athron, D. Harries, R. Nevzorov, and A. G. Williams, “\(E_6\) inspired SUSY benchmarks, dark matter relic density and a 125 GeV Higgs,” Phys. Lett. B, 760, 19–25 (2016); arXiv: 1512.07040.

    Article  ADS  CAS  Google Scholar 

  100. P. Ko, Y. Omura, and C. Yu, “Higgs and dark matter physics in the type-II two-Higgs-doublet model inspired by \(E_{6}\) GUT,” JHEP, 06, 034, 29 pp. (2015); arXiv: 1502.00262.

    Article  ADS  Google Scholar 

  101. P. Athron, D. Harries, R. Nevzorov, and A. G. Williams, “Dark matter in a constrained \(E_{6}\) inspired SUSY mode,” JHEP, 12, 128, 125 pp. (2016); arXiv: 1610.03374.

    Article  ADS  Google Scholar 

  102. R. Nevzorov and A. W. Thomas, “Baryon asymmetry generation in the E\(_6\)CHM,” Phys. Lett. B, 774, 123–129 (2017); arXiv: 1706.02856.

    Article  ADS  CAS  Google Scholar 

  103. R. Nevzorov, “\(E_6\) inspired SUSY models with custodial symmetry,” Internat. J. Modern Phys. A, 33, 1844007, 10 pp. (2018); arXiv: 1805.08260.

    Article  ADS  CAS  Google Scholar 

  104. B. Dutta, S. Ghosh, I. Gogoladze, and T. Li, “Three-loop neutrino masses via new massive gauge bosons from \(E_6\) GUT,” Phys. Rev. D, 98, 055028, 12 pp. (2018); arXiv: 1805.01866.

    Article  ADS  CAS  Google Scholar 

  105. R. Nevzorov and A. W. Thomas, “\(E_{6}\) inspired composite Higgs model and baryon asymmetry generation,” Phys. Part. Nucl., 51, 709–713 (2020); arXiv: 2001.09843.

    Article  Google Scholar 

  106. R. Nevzorov, “\(E_6\) GUT and baryon asymmetry generation in the E\(_6\)CHM,” Universe, 8, 33, 27 pp. (2022).

    Article  ADS  CAS  Google Scholar 

  107. R. Nevzorov, “On the suppression of the dark matter-nucleon scattering cross section in the SE\(_{6}\)SSM,” Symmetry, 14, 2090, 14 pp. (2022); arXiv: 2209.00505.

    Article  ADS  CAS  Google Scholar 

  108. R. Nevzorov, “Leptogenesis and dark matter-nucleon scattering cross section in the SE\(_{6}\)SSM,” Universe, 9, 137, 19 pp. (2023); arXiv: 2304.04629.

    Article  ADS  CAS  Google Scholar 

  109. S. E. Konshtein and E. S. Fradkin, “Asymptotically supersymmetrical model of a single interaction based on \(E_8\),” JETP Lett., 32, 557–560 (1980).

    Google Scholar 

  110. N. S. Baaklini, “Supergrand unification in \(E_8\),” Phys. Lett. B, 91, 376–378 (1980).

    Article  ADS  Google Scholar 

  111. N. S. Baaklini, “Supersymmetric exceptional gauge unification,” Phys. Rev. D, 22, 3118–3127 (1980).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  112. I. Bars and M. Günaydin, “Grand unification with the exceptional group \(E_8\),” Phys. Rev. Lett., 45, 859–862 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  113. M. Koca, “On tumbling \(E_8\),” Phys. Lett. B, 107, 73–76 (1981).

    Article  ADS  Google Scholar 

  114. C.-L. Ong, “Supersymmetric models for quarks and leptons with nonlinearly realized \(E_8\) symmetry,” Phys. Rev. D, 31, 3271–3279 (1985).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  115. W. Buchmüller and O. Napoly, “Exceptional coset spaces and the spectrum of quarks and leptons,” Phys. Lett. B, 163, 161–166 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  116. S. Thomas, “Softly broken \(N=4\) and \(E_8\),” J. Phys. A: Math. Gen., 19, 1141–1149 (1986).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  117. S. M. Barr, “\(E_8\) family unification, mirror fermions, and new low-energy physics,” Phys. Rev. D, 37, 204–209 (1988).

    Article  ADS  CAS  Google Scholar 

  118. S. Mahapatra and B. B. Deo, “Supergravity-induced \(E_8\) gauge hierarchies,” Phys. Rev. D, 38, 3554–3558 (1988).

    Article  ADS  CAS  Google Scholar 

  119. S. L. Adler, “Should \(E_8\) SUSY Yang–Mills be reconsidered as a family unification model?,” Phys. Lett. B, 533, 121–125 (2002); arXiv: hep-ph/0201009.

    Article  MathSciNet  Google Scholar 

  120. S. L. Adler, “Further thoughts on supersymmetric \(E_8\) as a family and grand unification theory,” arXiv: hep-ph/0401212.

  121. J. E. Camargo-Molina, A. P. Morais, A. Ordell, R. Pasechnik, M. O. P. Sampaio, and J. Wessén, “Reviving trinification models through an \(\mathrm{E}_6\)-extended supersymmetric GUT,” Phys. Rev. D, 95, 075031, 6 pp. (2017); arXiv: 1610.03642.

    Article  ADS  Google Scholar 

  122. A. P. Morais, R. Pasechnik, and W. Porod, “Prospects for new physics from gauge left-right-colour-family grand unification hypothesis,” Eur. Phys. J. C, 80, 1162, 32 pp. (2020); arXiv: 2001.06383.

    Article  ADS  CAS  Google Scholar 

  123. A. Aranda, F. J. de Anda, and S. F. King, “Exceptional unification of families and forces,” Nucl. Phys. B, 960, 115209, 29 pp. (2020); arXiv: 2005.03048.

    Article  MathSciNet  CAS  Google Scholar 

  124. A. P. Morais, R. Pasechnik, and W. Porod, “Grand unified origin of gauge interactions and families replication in the Standard Model,” Universe, 7, 461, 11 pp. (2021); arXiv: 2001.04804.

    Article  ADS  CAS  Google Scholar 

  125. A. Aranda, F. J. de Anda, A. P. Morais, and R. Pasechnik, “Can \(E_8\) unification at low energies be consistent with proton decay?,” arXiv: 2107.05421.

  126. M. F. Sohnius and P. C. West, “Conformal invariance in \(N=4\) supersymmetric Yang–Mills theory,” Phys. Lett. B, 100, 245–250 (1981).

    Article  ADS  Google Scholar 

  127. M. T. Grisaru and W. Siegel, “Supergraphity: (II). Manifestly covariant rules and higher-loop finiteness,” Nucl. Phys. B, 201, 292–314 (1982).

    Article  ADS  Google Scholar 

  128. P. S. Howe, K. S. Stelle, and P. K. Townsend, “Miraculous ultraviolet cancellations in supersymmetry made manifest,” Nucl. Phys. B, 236, 125–166 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  129. S. Mandelstam, “Light-cone superspace and the ultraviolet finiteness of the \(N=4\) model,” Nucl. Phys. B, 213, 149–168 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  130. L. Brink, O. Lindgren, and B. E. W. Nilsson, “\(N=4\) Yang–Mills theory on the light cone,” Nucl. Phys. B, 212, 401–412 (1983).

    Article  ADS  Google Scholar 

  131. M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory, Vol. 1: Introduction, Cambridge Univ. Press, Cambridge (1987).

    Google Scholar 

  132. E. Boos, “Induced spontaneous symmetry breaking chain,” Europhys. Lett., 136, 21003, 5 pp. (2022); arXiv: 2106.07181.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author is very grateful to Prof. K. Patel and Prof. R. Maji for indicating some important references.

Funding

This work was supported by the Russian Science Foundation (grant No. 21-12-00129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Stepanyantz.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2024, Vol. 218, pp. 341–388 https://doi.org/10.4213/tmf10541.

Publisher’s note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Branching rules for the fundamental and adjoint representations of $$E_7$$ with respect to the subgroup $$E_6\times U_1$$

The branching rules for the \(E_7\) representations with respect to the subgroup \(E_6\times U_1\) presented in [17] do not contain \(U_1\) charges. That is why we here discuss how these charges can be found and calculate them for two lowest \(E_7\) representations in which we are interested.

According to [17], the group \(E_7\) contains a subgroup \(SO_{12}\times SO_3\). The \(SO_{12}\) group in turn contains the subgroup \(SO_{10}\times U_1\), and we hence obtain the embedding

$$ E_7 \supset SO_{12}\times SO_3 \supset (SO_{10}\times \underbrace{U_1}_{\gamma_2}) \times \underbrace{U_1}_{\gamma_1},$$
(A.1)
where \(\gamma_1\) and \(\gamma_2\) are real parameters of the corresponding \(U_1\) transformations. The \(E_7\) branching rules for the \(56\) and \(133\) representations with respect to the \(SO_{12}\times SO_3\) subgroup are given by Eq. (32). The \(SO_{12}\) branching rules with respect to the \(SO_{10}\times U_1\) subgroup can also be found in [17] and have the form
$$ \begin{aligned} \, &12|_{SO_{12}} = 1(2) + 1(-2) + 10(0)|_{SO_{10}\times U_1},\\ & 32|_{SO_{12}} = 16(1) + \overline{16}(-1)|_{SO_{10}\times U_1},\\ & 32'|_{SO_{12}} = 16(-1) + \overline{16}(1)|_{SO_{10}\times U_1},\\ & 66|_{SO_{12}}= 1(0) + 10(2) + 10(-2) + 45(0)|_{SO_{10}\times U_1}, \end{aligned}$$
(A.2)
where the numbers in brackets are the charges with respect to the \(U_1\) group parameterized by \(\gamma_2\). The \(U_1\) charges for various parts of \(SO_3\) representations can also be easily found from the theory of angular momentum. Taking into account that \(2J_3\) ranges from \(-2J\) to \(2J\) with step 2 and using Eqs. (32) and (A.2), we conclude that the fundamental and adjoint representations of \(E_7\) decompose into irreducible representations of subgroup (A.1) according to the branching rules
$$ \begin{aligned} \, &56|_{E_7} = [12,2] + [32,1]|_{SO_{12}\times SO_3} = 1(1,2) + 1(-1,2) + 1(1,-2) + 1(-1,-2) +{} \\ &\hphantom{56|_{E_7} ={}}+ 10(1,0) + 10(-1,0) + 16(0,1) + \overline{16}(0,-1)|_{SO_{10}\times U_1\times U_1},\\ &133|_{E_7} = [1,3] + [66,1] + [32',2]|_{SO_{12}\times SO_3} = 1(2,0) + 1(0,0) + 1(-2,0) +{} \\ &\hphantom{133|_{E_7}={}}+ 1(0,0) + 10(0,2)+ 10(0,-2) + 45(0,0) + 16(1,-1) + \overline{16}(1,1) +{} \\ &\hphantom{133|_{E_7} ={}}+ 16(-1,-1)+ \overline{16}(-1,1) |_{SO_{10}\times U_1\times U_1}. \end{aligned}$$
(A.3)
Here, the first number in round brackets is the charge \(Q_{\gamma_1}\) corresponding to the \(U_1\) subgroup parameterized by \(\gamma_1\), and the second number is the charge \(Q_{\gamma_2}\) corresponding to the \(U_1\) subgroup parameterized by \(\gamma_2\).

On the other hand, according to [17], the group \(E_7\) contains the subgroup \(E_6\times U_1\), and the group \(E_6\) contains the subgroup \(SO_{10}\times U_1\). Therefore, we obtain another embedding

$$ E_7 \supset E_6\times \underbrace{U_1}_{\delta_1} \supset (SO_{10}\times \underbrace{U_1}_{\delta_2}) \times \underbrace{U_1}_{\delta_1},$$
(A.4)
where the parameters of the \(U_1\) groups are denoted by \(\delta_1\) and \(\delta_2\). The branching rules for the \(56\) and \(133\) representations of \(E_7\) with respect to the \(E_6\) subgroup can be found in [17] and are rather evident. However, it is not so trivial to find the corresponding \(U_1\) charges. For this, we assume that
$$ \begin{aligned} \, &56|_{E_7} = 27(1) + \overline{27}(-1) + 1(x_1) + 1(-x_1)|_{E_6\times U_1},\\ &133|_{E_7} = 1(x_2) + 27(x_3) + \overline{27}(-x_3) + 78(x_4)|_{E_6\times U_1}, \end{aligned}$$
(A.5)
where in the brackets we write the charge corresponding to the \(U_1\) subgroup parameterized by \(\delta_1\), and the constants \(x_i\) are to be calculated. (The \(U_1\) charge of the \(E_6\) representation \(27\) in the first equation can be chosen arbitrarily. Setting it to 1, we simply specify its normalization.) Using Eq. (63), we obtain the branching rules with respect to subgroup (A.4) in the form
$$ \begin{aligned} \, &56|_{E_7} = 1(1,4) +10(1,-2) +16(1,1) + 1(-1,-4) + 10(-1,2) + \overline{16}(-1,-1) +{} \\ &\hphantom{56|_{E_7} ={}}+ 1(x_1,0) + 1(-x_1,0)|_{SO_{10}\times U_1\times U_1},\\ & 133|_{E_7} = 1(x_2,0) + 1(x_3,4) + 10(x_3,-2) + 16(x_3,1) + 1(-x_3,-4) + 10(-x_3,2)+{} \\ &\hphantom{133|_{E_7}={}} +\overline{16}(-x_3,-1) + 1(x_4,0) + 16(x_4,-3) + \overline{16}(x_4,3) + 45(x_4,0)|_{SO_{10}\times U_1\times U_1}, \end{aligned}$$
(A.6)
where the numbers in the brackets are the charges \(Q_{\delta_1}\) and \(Q_{\delta_2}\) with respect to the \(U_1\) groups respectively parameterized by \(\delta_1\) and \(\delta_2\).

Comparing Eqs. (A.3) and (A.6) we see that (as expected) the \(SO_{10}\) representations coincide, but their \(U_1\) charges are different. The matter is that the \(U_1\) subgroups parameterized by \(\gamma_{1,2}\) and \(\delta_{1,2}\) are different. However, the \(U_1\) charges coincide if we make the identification

$$ \begin{cases} Q_{\delta_1} = Q_{\gamma_1} + Q_{\gamma_2},\\ Q_{\delta_2} = -2 Q_{\gamma_1} + Q_{\gamma_2}. \end{cases}$$
(A.7)
This implies that under the \(U_1\times U_1\) transformations, a field \(\varphi\) transforms as
$$ \varphi \to \exp(iQ_{\delta_1} \delta_1 + i Q_{\delta_2}\delta_2)\varphi = \exp(i Q_{\gamma_1} (\delta_1 - 2 \delta_2) + iQ_{\gamma_2}(\delta_1 + \delta_2))\varphi,$$
(A.8)
and hence the parameters of the \(U_1\times U_1\) subgroups in (A.1) and (A.4) are related as
$$ \begin{cases} \gamma_1 = \delta_1 -2\delta_2,\\ \gamma_2 = \delta_1 + \delta_2, \end{cases} \qquad\qquad \begin{cases} \delta_1 = \dfrac{\gamma_1 + 2\gamma_2}{3},\\[2mm] \delta_2 = \dfrac{-\gamma_1 + \gamma_2}{3}. \end{cases}$$
(A.9)
Using Eq. (A.7) and comparing Eqs. (A.3) and (A.6), we obtain
$$ x_1=3,\qquad x_2=0,\qquad x_3=-2,\qquad x_4=0.$$
(A.10)
Substituting these values in Eq. (A.5), we obtain the sought branching rules
$$56|_{E_7} = 27(1) + \overline{27}(-1) + 1(3) + 1(-3)|_{E_6\times U_1},$$
(A.11)
$$133|_{E_7} = 1(0) + 27(-2) + \overline{27}(2) + 78(0)|_{E_6\times U_1},$$
(A.12)
which coincide with Eq. (70).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanyantz, K.V. Gauge coupling unification in the flipped \(E_8\) GUT. Theor Math Phys 218, 295–335 (2024). https://doi.org/10.1134/S0040577924020090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577924020090

Keywords

Navigation