Skip to main content
Log in

A higher-order nonlocal elasticity continuum model for deterministic and stochastic particle-based materials

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper proposes, for particle-based materials, a higher-order nonlocal elasticity continuum model that includes the Piola peridynamics and the Eringen nonlocal elasticity. When referring to particle-based materials, we denote systems that can be modeled as assemblies of material points (or particles). Note that this paper is not devoted to granular materials, then factors such as the topology of contacts, granulometry, grain sizes, shapes, and geometric structure are not considered. Additionally, when referring to Piola peridynamics, we specifically denote the particular peridynamic model developed by Piola, which differs from the commonly adopted approach to peridynamics. The proposed higher-order nonlocal elasticity continuum model offers several advantages. First, it can describe interactions between material points over longer ranges than those considered by Eringen nonlocal elasticity. Second, it exhibits similar characteristics to gradient-type theories and Piola peridynamics, enabling the consideration of more complex external and contact actions, including Nth order forces and stresses. Furthermore, the proposed deterministic model is developed to lay the foundation for a stochastic formulation applicable to uncertain particle-based materials. We want to emphasize that the aim of this paper is not to unify Eringen nonlocal elasticity with the various existing peridynamic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

not applicable.

References

  1. Cauchy, A.-L.: Exercices de mathématiques. Année 2. De Bure fréres, Paris (1827)

  2. Love, A.: A Treatise on the Mathematical Theory of Elasticity, vol. 1. University Press, Cambridge (1892)

    Google Scholar 

  3. Rivlin, R.S., Rideal, E.K.: Large elastic deformations of isotropic materials iv: further developments of the general theory. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 241, 379–397 (1948)

    MathSciNet  Google Scholar 

  4. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Pergamon Press, Bristol (1970)

    Google Scholar 

  5. Ciarlet, P.G.: Mathematical Elasticity, Volume I: Three-Dimensional Elasticity. North-Holland, Amsterdam (1988)

  6. dell’Isola, F., Eugster, S.R., Spagnuolo, M., Barchiesi, E. (eds.): Evaluation of Scientific Sources in Mechanics: Heiberg’s Prolegomena to the Works of Archimedes and Hellinger’s Encyclopedia Article on Continuum Mechanics. Springer, Cham (2022)

    Google Scholar 

  7. Germain, P.La.: méthode des puissances virtuelles en mécanique des milieux continus, I: Théorie du second gradient. Journal de Mécanique 12, 235–274 (1973)

  8. Maugin, G.A.: The principle of virtual power: from eliminating metaphysical forces to providing an efficient modelling tool. Contin. Mech. Thermodyn. 25, 127–146 (2013)

    MathSciNet  Google Scholar 

  9. Cuomo, M., Contrafatto, L., Greco, L.: A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173–188 . Special issue on Nonlinear and Nonlocal Problems. In occasion of 70th birthday of Prof. Leonid Zubov (2014)

  10. Giorgio, I.: A variational formulation for one-dimensional linear thermoviscoelasticity. Math. Mech. Complex Syst. 9, 397–412 (2021)

    MathSciNet  Google Scholar 

  11. Abali, B.E.: Energy based methods applied in mechanics by using the extended Noether’s formalism. Zeitschrift für Angewandte Mathematik und Mechanik e202300020 (2023)

  12. dell’Isola, F., Misra, A.: Principle of virtual work as foundational framework for metamaterial discovery and rational design. Comptes Rendus Mécanique 351, 1–25 (2023)

    Google Scholar 

  13. dell’Isola, F., Maier, G., Perego, U., et al.: The Complete Works of Gabrio Piola, vol. I. Springer, Switzerland (2014)

    Google Scholar 

  14. dell’Isola, F., Andreaus, U., Cazzani, A., et al.: The Complete Works of Gabrio Piola, vol. II. Springer Nature, Switzerland (2019)

    Google Scholar 

  15. Truesdell, C., Toupin, R.: The Classical Field Theories, pp. 226–858. Springer, Berlin (1960)

    Google Scholar 

  16. Noll, W.: The Foundations of Mechanics and Thermodynamics: Selected Papers. Springer, Berlin (1974)

    Google Scholar 

  17. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics. Springer, Berlin (2004)

    Google Scholar 

  18. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    MathSciNet  Google Scholar 

  19. Madenci, E., Oterkus, E.: Peridynamic Theory and Its Applications. Springer, New York (2013)

    Google Scholar 

  20. Taylor, M., Steigmann, D.J.: A two-dimensional peridynamic model for thin plates. Math. Mech. Solids 20, 998–1010 (2015)

    MathSciNet  Google Scholar 

  21. Javili, A., McBride, A.T., Steinmann, P.: Continuum-kinematics-inspired peridynamics. Mechanical problems. J. Mech. Phys. Solids 131, 125–146 (2019)

    MathSciNet  Google Scholar 

  22. Javili, A., Morasata, R., Oterkus, E., Oterkus, S.: Peridynamics review. Math. Mech. Solids 24, 3714–3739 (2019)

    MathSciNet  Google Scholar 

  23. Placidi, L., Timofeev, D., Maksimov, V., et al.: Micro-mechano-morphology-informed continuum damage modeling with intrinsic 2nd gradient (pantographic) grain-grain interactions. Int. J. Solids Struct. 254–255, 111880 (2022)

    Google Scholar 

  24. La Valle, G., Abali, B.E., Falsone, G., Soize, C.: Sensitivity of a homogeneous and isotropic second-gradient continuum model for particle-based materials with respect to uncertainties. Zeitschrift für Angewandte Mathematik und Mechanik e202300068 (2023)

  25. dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20, 887–928 (2015)

    MathSciNet  Google Scholar 

  26. Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425–435 (1972)

    Google Scholar 

  27. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

    MathSciNet  Google Scholar 

  28. Maugin, G.A.: Nonlocal theories or gradient-type theories: a matter of convenience? Arch. Mech. 3, 15–26 (1979)

    MathSciNet  Google Scholar 

  29. Kröner, E.: Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 3, 731–742 (1967)

    Google Scholar 

  30. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    Google Scholar 

  31. Eringen, A.C.: Vistas of nonlocal continuum physics. Int. J. Eng. Sci. 30, 1551–1565 (1992)

    MathSciNet  Google Scholar 

  32. Bažant, Z.P.: Nonlocal damage theory based on micromechanics of crack interactions. J. Eng. Mech. 120, 1–25 (1994)

    Google Scholar 

  33. Povstenko, Y.Z.: The nonlocal theory of elasticity and its applications to the description of defects in solid bodies. J. Math. Sci. 97, 3840–3845 (1999)

    Google Scholar 

  34. Arash, B., Wang, Q.: A Review on the Application of Nonlocal Elastic Models in Modeling of Carbon Nanotubes and Graphenes, pp. 57–82. Springer, Cham (2014)

    Google Scholar 

  35. Polizzotto, C.: Nonlocal elasticity and related variational principles. Int. J. Solids Struct. 38, 7359–7380 (2001)

    MathSciNet  Google Scholar 

  36. Polizzotto, C., Fuschi, P., Pisano, A.A.: A strain-difference-based nonlocal elasticity model. Int. J. Solids Struct. 41, 2383–2401 (2004)

    Google Scholar 

  37. Polizzotto, C., Fuschi, P., Pisano, A.A.: A nonhomogeneous nonlocal elasticity model. Eur. J. Mech. A. Solids 25, 308–333 (2006)

    MathSciNet  Google Scholar 

  38. Khodabakhshi, P., Reddy, J.N.: A unified integro-differential nonlocal model. Int. J. Eng. Sci. 95, 60–75 (2015)

    MathSciNet  Google Scholar 

  39. Batra, R.C.: Misuse of Eringen’s nonlocal elasticity theory for functionally graded materials. Int. J. Eng. Sci. 159, 103425 (2021)

    MathSciNet  Google Scholar 

  40. Pisano, A.A., Fuschi, P., Polizzotto, C.: Integral and differential approaches to Eringen’s nonlocal elasticity models accounting for boundary effects with applications to beams in bending. Z. Angew. Math. Mech. 101, e202000152 (2021)

    MathSciNet  Google Scholar 

  41. Apostol, T.M.: Mathematical Analysis, 2nd edn. Addison Wesley Publishing Company, Massachusetts (1974)

    Google Scholar 

  42. dell’Isola, F., Fedele, R.: Irreducible representation of surface distributions and Piola transformation of external loads sustainable by third gradient continua. Comptes Rendus. Mécanique (2023)

  43. Soize, C.: Non-gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators. Comput. Methods Appl. Mech. Eng. 195, 26–64 (2006)

    MathSciNet  Google Scholar 

  44. Soize, C.: Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size. Probab. Eng. Mech. 23, 307–323. 5th International Conference on Computational Stochastic Mechanics (2008)

  45. Guilleminot, J., Soize, C.: Non-gaussian positive-definite matrix-valued random fields with constrained eigenvalues: application to random elasticity tensors with uncertain material symmetries. Int. J. Numer. Methods Eng. 88, 1128–1151 (2011)

    MathSciNet  Google Scholar 

  46. Guilleminot, J., Soize, C.: On the statistical dependence for the components of random elasticity tensors exhibiting material symmetry properties. J. Elast. 111, 109–130 (2013)

    MathSciNet  Google Scholar 

  47. Soize, C.: Stochastic elliptic operators defined by non-gaussian random fields with uncertain spectrum. Theory Probab. Math. Stat. 105, 113–136 (2021)

    MathSciNet  Google Scholar 

  48. Soize, C.: An overview on uncertainty quantification and probabilistic learning on manifolds in multiscale mechanics of materials. Math. Mech. Complex Syst. 11, 87–174 (2023)

    MathSciNet  Google Scholar 

  49. dell’Isola, F., Della Corte, A., Esposito, R., Russo, L.: Some Cases of Unrecognized Transmission of Scientific Knowledge: From Antiquity to Gabrio Piola’s Peridynamics and Generalized Continuum Theories, 77–128. Springer, Cham (2016)

    Google Scholar 

  50. dell’Isola, F., Seppecher, P., Madeo, A.: How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “á la D’Alembert’’. Z. Angew. Math. Phys. 63, 1119–1141 (2012)

    MathSciNet  Google Scholar 

  51. Fedele, R.: Third-gradient continua: nonstandard equilibrium equations and selection of work conjugate variables. Math. Mech. Solids 27, 2046–2072 (2022)

    MathSciNet  Google Scholar 

  52. Eremeyev, V.A.: Strong ellipticity and infinitesimal stability within Nth-order gradient elasticity. Mathematics 11, 823 (2023)

    Google Scholar 

Download references

Acknowledgements

The first author of the paper, who is currently a scientific visitor, would like to express gratitude to the Laboratoire Modélisation et Simulation Multi Echelle (MSME) at Université Gustave Eiffel.

Funding

not applicable.

Author information

Authors and Affiliations

Authors

Contributions

GLV developed the theory, wrote, and reviewed the manuscript; CS developed the theory, wrote, and reviewed the manuscript.

Corresponding author

Correspondence to Gabriele La Valle.

Ethics declarations

Conflict of interest

The authors declare that they have no interests of a financial or personal nature that might be perceived to influence the results reported in this paper.

Consent for publication

The authors give their consent for publication.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we give some of the formulas presented in this paper for \(N=2\), i.e., for 2nd gradient continua. In the following, summation is implied for repeated indices. Let us assume that \(\textbf{r}\) at the point \(\overline{\textbf{x}}\) can be approximated using its Taylor expansion in the neighborhood of \(\textbf{x}\) truncated at the second order,

$$\begin{aligned} r_{i}(\overline{\textbf{x}})=r_{i}(\textbf{x})+\frac{\partial r_{i}(\textbf{x})}{\partial x_{j}}(\overline{x}_{j}-x_{j})+\frac{1}{2}\frac{\partial ^{2} r_{i}(\textbf{x})}{\partial x_{j}\partial x_{k}}(\overline{x}_{j}-x_{j})(\overline{x}_{k}-x_{k}). \end{aligned}$$
(64)

Let us define the tensor \(\textbf{f}^{(1)}(\textbf{x})\) represented by the matrix \([\textbf{f}^{(1)}(\textbf{x})]\) such that

$$\begin{aligned}{}[\textbf{f}^{(1)}(\textbf{x})]_{ij}=\frac{\partial r_{i}(\textbf{x})}{\partial x_{j}}. \end{aligned}$$
(65)

The tensor \(\textbf{f}(\overline{\textbf{x}},\textbf{x})\) represented by the matrix \([\textbf{f}(\overline{\textbf{x}},\textbf{x})]\) (see Eq. (5)) becomes

$$\begin{aligned}{}[\textbf{f}(\overline{\textbf{x}},\textbf{x})]_{ij}=[\textbf{f}^{(1)}(\textbf{x})]_{ij} +\frac{1}{2}\frac{\partial [\textbf{f}^{(1)}(\textbf{x})]_{ij}}{\partial x_{k}}(\overline{x}_{k}-x_{k}). \end{aligned}$$
(66)

Taking into account Eqs. (65) and (66), Eq. (64) can be rewritten as:

$$\begin{aligned} r_{i}(\overline{\textbf{x}})=r_{i}(\textbf{x})+[\textbf{f}(\overline{\textbf{x}}, \textbf{x})]_{ij}(\overline{x}_{j}-x_{j}), \end{aligned}$$
(67)

where \(\mathrm {det(\textbf{f}(\overline{\textbf{x}},\textbf{x}))>0}\) under the hypothesis of orientation-preserving deformations. By taking into account Eq. (66), tensor \(\varvec{\mathbbm {c}}(\overline{\textbf{x}},\textbf{x})\) represented by the matrix \([\varvec{\mathbbm {c}}(\overline{\textbf{x}},\textbf{x})]\) (see Eq. (12)) can be written in terms of components as

$$\begin{aligned}{}[\varvec{\mathbbm {c}}(\overline{\textbf{x}},\textbf{x})]_{pq}=[\textbf{c}^{(1)}(\textbf{x})]_{pq} +\frac{1}{2}c_{pqj}^{(12)}(\textbf{x})(\overline{x}_{j}-x_{j})+\frac{1}{4}c_{pqjk}^{(2)} (\textbf{x})(\overline{x}_{j}-x_{j})(\overline{x}_{k}-x_{k}), \end{aligned}$$
(68)

where \(\textbf{c}^{(1)}(\textbf{x})\) is the right Cauchy–Green tensor (see Eq. (32)), \(\textbf{c}^{(12)}(\textbf{x})=\nabla \textbf{c}^{(1)}(\textbf{x})\) is the third-order tensor whose components are

$$\begin{aligned} c_{pqj}^{(12)}(\textbf{x})=[\textbf{f}^{(1)}(\textbf{x})]_{ip}\frac{\partial [\textbf{f}^{(1)}(\textbf{x})]_{iq}}{\partial x_{j}}+\frac{\partial [\textbf{f}^{(1)}(\textbf{x})]_{ip}}{\partial x_{j}}[\textbf{f}^{(1)}(\textbf{x})]_{iq}, \end{aligned}$$
(69)

and \(\textbf{c}^{(2)}(\textbf{x})\) is the fourth-order tensor whose components are

$$\begin{aligned} c_{pqjk}^{(2)}(\textbf{x})=\frac{\partial [\textbf{f}^{(1)}(\textbf{x})]_{ip}}{\partial x_{j}}\frac{\partial [\textbf{f}^{(1)}(\textbf{x})]_{iq}}{\partial x_{k}}. \end{aligned}$$
(70)

Taking into account Eq. (68), tensor \(\varvec{\mathbbm {e}}(\overline{\textbf{x}},\textbf{x})\) represented by the matrix \([\varvec{\mathbbm {e}}(\overline{\textbf{x}},\textbf{x})]\) (see (14) can be rewritten in terms of components as

$$\begin{aligned}{}[\varvec{\mathbbm {e}}(\overline{\textbf{x}},\textbf{x})]_{pq}=[\textbf{e}^{(1)}(\textbf{x})]_{pq} +\frac{1}{4}c_{pqj}^{(12)}(\textbf{x})(\overline{x}_{j}-x_{j})+\frac{1}{8}c_{pqjk}^{(2)}(\textbf{x}) (\overline{x}_{j}-x_{j})(\overline{x}_{k}-x_{k}). \end{aligned}$$
(71)

Deriving Eq. (64) with respect to \(\overline{\textbf{x}}\), it is not difficult to show that \([\varvec{\mathbbm {e}}(\overline{\textbf{x}},\textbf{x})]=[\varvec{\mathbbm {e}}(\textbf{x},\overline{\textbf{x}})]\) and, consequently, \([\varvec{\mathbbm {e}}(\overline{\textbf{x}},\textbf{x})]=[\varvec{\textrm{e}}(\overline{\textbf{x}},\textbf{x})]\). Thus, replacing Eq. (71) into Eq. (53), we obtain a novel deformation energy density suitable for particle-based materials under the hypothesis of second gradient continua. Further details and computational aspects will be addressed in the second part of the paper. It will be shown that tensor \([\varvec{\mathbbm {e}}(\overline{\textbf{x}},\textbf{x})]\) allows us to formulate even more general models, exploring the possibility to encompass gradient-type and integral nonlocal theories.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Valle, G., Soize, C. A higher-order nonlocal elasticity continuum model for deterministic and stochastic particle-based materials. Z. Angew. Math. Phys. 75, 49 (2024). https://doi.org/10.1007/s00033-024-02196-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-024-02196-w

Mathematics Subject Classification

Navigation