Skip to main content
Log in

Thermodynamics of viscoelastic solids, its Eulerian formulation, and existence of weak solutions

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The thermodynamic model of viscoelastic deformable solids at finite strains is formulated in a fully Eulerian way in rates. Also, effects of thermal expansion or buoyancy due to evolving mass density in a gravity field are covered. The Kelvin–Voigt rheology with a higher-order viscosity (exploiting the concept of multipolar materials) is used, allowing for physically relevant frame-indifferent stored energies and for local invertibility of deformation. The model complies with energy conservation and Clausius–Duhem entropy inequality. Existence and a certain regularity of weak solutions are proved by a Faedo–Galerkin semi-discretization and a suitable regularization. Subtle physical limitations of the model are illustrated on thermally expanding neo-Hookean materials or materials with phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({\varvec{v}}\) :

Velocity (in m/s),

\(\varrho \) :

Mass density (in kg/m\(^3\)),

\(\varrho _\textsc {r}^{}\) :

Referential mass density,

\({\varvec{F}}\) :

Deformation gradient,

\(\theta \) :

Temperature (in K)

\({\varvec{T}}\) :

Cauchy stress (symmetric, in Pa),

\(\mathcal {H}\) :

Hyper-stress (in Pa m),

\({\varvec{j}}\) :

Heat flux (in W/m\(^2\)),

\({\varvec{f}}\) :

Traction load,

\(\det (\cdot )\) :

Determinant of a matrix,

\(\textrm{Cof}(\cdot )\) :

Cofactor matrix,

\(\nu _\flat >0\) :

A boundary viscosity

\({\mathbb {R}}_\textrm{sym}^{d\times d}\) :

\(=\{A\in {\mathbb {R}}^{d\times d};\ A^\top =A\}\).

\(\psi =\psi ({\varvec{F}},\theta )\) :

Referential free energy (in J/m\(^3\)=Pa)

\(\varphi =\varphi ({\varvec{F}})\) :

Referential stored energy (in J/m\(^3\)=Pa),

\(\gamma =\gamma ({\varvec{F}},\theta )\) :

Referential heat part of free energy,

\({\varvec{e}}({\varvec{v}})=\frac{1}{2}{\nabla }{\varvec{v}}^\top \!{+}\frac{1}{2}{\nabla }{\varvec{v}}\) :

Symmetric velocity gradient (in s\(^{-1}\)),

\({\varvec{D}}={\varvec{D}}({\varvec{F}},\theta ;{\varvec{e}}({\varvec{v}}))\) :

Dissipative part of Cauchy stress,

\(w\) :

Heat part of internal energy (enthalpy, in J/m\(^3\)),

\((^{_{_{\bullet }}})\!\mathchoice{{\buildrel {\text {.}}\over {^{}}}}{{\buildrel {\text {.}}\over {^{}}}}{{\buildrel {\text {.}}\over {^{}}}}{{\buildrel {\text {.}}\over {^{}}}}=\frac{\partial {}}{\partial t}{^{_{_{\bullet }}}}+({\varvec{v}}{\cdot }{\nabla })^{_{_{\bullet }}}\) :

Convective time derivative,

\(\cdot \) or  : :

Scalar products of vectors or matrices,

\(\vdots \ \ \) :

Scalar products of third-order tensors,

\(\kappa =\kappa ({\varvec{F}},\theta )\) :

Thermal conductivity (in W/m\(^{-2}\)K\(^{-1}\)),

\(c=c({\varvec{F}},\theta )\) :

Heat capacity (in Pa/K),

\(\nu >0\) :

A bulk hyper-viscosity coefficient,

\({\varvec{g}}\) :

External bulk load (gravity acceleration in m/s\(^{2}\)).

References

  1. Alberti, G., Crippa, G., Mazzucato, A.L.: Loss of regularity for the continuity equation with non-Lipschitz velocity field. Ann. PDE 5, 9 (2019)

    MathSciNet  Google Scholar 

  2. Antman, S.S.: Physically unacceptable viscous stresses. Z. Angew. Math. Physik 49, 980–988 (1998)

    MathSciNet  Google Scholar 

  3. Ball, J.M.: Singular mimimizers and their significance in elasticity. In: Crandall, M.G., Rabinowitz, P.H., Turner, R.E.L. (eds.) Directions in Partial Differential Equations, pp. 1–15. Academic Press, Cambridge (1987)

    Google Scholar 

  4. Ball, J.M.: Some open problems in elasticity. In: Newton, P., Holmes, P., Weinstein, A. (eds.) Geometry. Mechanics, and Dynamics, pp. 3–59. Springer, New York (2002)

    Google Scholar 

  5. Ball, J.M.: Progress and puzzles in nonlinear elasticity. In: Schröder, J., Neff, P. (eds.) Poly-, Quasi- and Rank-One Convexity in Applied Mechanics, CISM Int. Centre for Mech. Sci., vol. 516, pp. 1–15. Springer, Wien (2010)

    Google Scholar 

  6. Ball, J.M., Mizel, V.J.: One-dimensional variational problems whose minimizers do not satisfy the Euler–Lagrange equation. Arch. Rational Mech. Anal. 90, 325–388 (1985)

    MathSciNet  Google Scholar 

  7. Bellout, H., Bloom, F.: Incompressible Bipolar and Non-Newtonian Viscous Fluid Flow. Bikhäuser/Springer, Cham (2014)

    Google Scholar 

  8. Boccardo, L., Dall’aglio, A., Gallouët, T., Orsina, L.: Nonlinear parabolic equations with measure data. J. Funct. Anal. 147, 237–258 (1997)

    MathSciNet  Google Scholar 

  9. Boccardo, L., Gallouët, T.: Non-linear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169 (1989)

    MathSciNet  Google Scholar 

  10. Bonet, J., Lee, C.H., Gil, A.J., Ghavamian, A.: A first order hyperbolic framework for large strain computational solid dynamics. Part III: thermo-elasticity. Comput. Methods Appl. Mech. Eng. 373, 113505 (2021)

    MathSciNet  Google Scholar 

  11. Carstensen, C., Dolzmann, G.: Time-space discretization of the nonlinear hyperbolic system \(u_{tt} = div (\sigma (du)+ du_t)\). SIAM J. Numer. Anal. 42, 75–89 (2004)

    MathSciNet  Google Scholar 

  12. Carstensen, C., Rieger, M.O.: Young-measure approximations for elastodynamics with non-monotone stress-strain relations. ESAIM Math. Modell. Numer. Anal. 38, 397–418 (2004)

    MathSciNet  Google Scholar 

  13. Christoforou, C., Galanopoulou, M., Tzavaras, A.E.: A discrete variational scheme for isentropic processes in polyconvex thermoelasticity. Calc. Var. 59, 122 (2020)

    MathSciNet  Google Scholar 

  14. Christoforou, C., Tzavaras, A.E.: Relative entropy for hyperbolic-parabolic systems and application to the constitutive theory of thermoviscoelasticity. Arch. Rational Mech. Anal. 229, 1–52 (2018)

    MathSciNet  Google Scholar 

  15. Dafermos, C.M.: Quasilinear hyperbolic systems with involutions. Arch. Rational Mech. Anal. 94, 373–389 (1986)

    MathSciNet  Google Scholar 

  16. Dafermos, C.M., Hrusa, W.J.: Energy methods for quasilinear hyperbolic initial-boundary value problems. Applications to elastodynamics. In: Dafermos, C.M., Joseph, D.D., Leslie, F.M. (eds.) The Breadth and Depth of Continuum Mechanics, pp. 609–634. Springer, Berlin (1986)

    Google Scholar 

  17. Demoulini, S.: Weak solutions for a class of nonlinear systems of viscoelasticity. Arch. Ration. Mech. Anal. 155, 299–334 (2000)

    MathSciNet  Google Scholar 

  18. Demoulini, S., Stuart, D., Tzavaras, A.: A variational approximation scheme for three dimensional elastodynamics with polyconvex energy. Arch. Ration. Mech. Anal. 157, 325–344 (2001)

    MathSciNet  Google Scholar 

  19. Demoulini, S., Stuart, D.M.A., Tzavaras, A.E.: Weak-strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics. Arch. Ration. Mech. Anal. 205, 927–961 (2012)

    MathSciNet  Google Scholar 

  20. Feireisl, E., Málek, J.: On the Navier–Stokes equations with temperature-dependent transport coefficients. Differ. Equ. Nonlinear Mech., 14pp.(electronic), Art.ID 90616 (2006)

  21. Fosdick, R., Royer-Carfagni, G.: The Lagrange multipliers and hyperstress constraint reactions in incompressible multipolar elasticity theory. J. Mech. Phys. Solids 50, 1627–1647 (2002)

    MathSciNet  Google Scholar 

  22. Foss, M., Hrusa, W.J., Mizel, V.J.: The Lavrentiev gap phenomenon in nonlinear elasticity. Arch. Ration. Mech. Anal. 167, 337–365 (2003)

    MathSciNet  Google Scholar 

  23. Fried, E., Gurtin, M.E.: Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-lenght scales. Arch. Ration. Mech. Anal. 182, 513–554 (2006)

    MathSciNet  Google Scholar 

  24. Godunov, S.K., Romenskii, E. I.: Elements of Continuum Mechanics and Conservation Laws. Springer, New York (2003). (Russian original: 1998, Novosibirsk)

  25. Godunov, S.K., Peshkov, I.M.: Thermodynamically consistent nonlinear model of elastoplastic Maxwell medium. Comput. Math. Math. Phys. 50, 1409–1426 (2010)

    MathSciNet  Google Scholar 

  26. Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, New York (2010)

    Google Scholar 

  27. Hu, X., Masmoudi, N.: Global solutions to repulsive Hookean elastodynamics. Arch. Ration. Mech. Anal. 223, 543–590 (2016)

    MathSciNet  Google Scholar 

  28. Hughes, T.J.R., Kato, T., Marsden, J.E.: Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity. Arch. Ration. Mech. Anal. 63, 273–294 (1977)

    MathSciNet  Google Scholar 

  29. Koumatos, K., Lattanzio, C., Spirito, S., Tzavaras, A.E.: Existence and uniqueness for a viscoelastic Kelvin–Voigt model with nonconvex stored energy. J. Hyperb. Differ. Eqs. 20, 433–474 (2023)

    MathSciNet  Google Scholar 

  30. Kružík, M., Roubíček, T.: Mathematical Methods in Continuum Mechanics of Solids. Springer, Switzerland (2019)

    Google Scholar 

  31. Lavrentiev, A.: Sur quelques problémes du calcul des variations. Ann. Mat. Pura Appl. 41, 107–124 (1926)

    Google Scholar 

  32. Lei, Z., Liu, C., Zhou, P.: Global solutions for incompressible viscoelastic fluids. Arch. Ration. Mech. Anal. 188, 371–398 (2008)

    MathSciNet  Google Scholar 

  33. Lian, W., et al.: Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations. Adv. Calc. Var. 14, 589–611 (2021)

    MathSciNet  Google Scholar 

  34. Liu, C., Walkington, N.J.: An Eulerian description of fluids containing visco-elastic particles. Arch. Ration. Mech. Anal. 159, 229–252 (2001)

    MathSciNet  Google Scholar 

  35. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs (1983)

    Google Scholar 

  36. Martinec, Z.: Principles of Continuum Mechanics. Birkhäuser/Springer, Switzerland (2019)

    Google Scholar 

  37. Matuš\(\mathring{\rm u}\)-Nečasová, Š., Medvid’ová, M.: Bipolar barotropic nonnewtonian fluid. Comment. Math. Univ. Carolinae 35, 467–483 (1994)

  38. Maugin, G.A.: Continuum Mechanics Through the Twentieth Century. Springer, Dordrecht (2013)

    Google Scholar 

  39. Mielke, A., Ortner, C., Sengül, Y.: An approach to nonlinear viscoelasticity via metric gradient flows. SIAM J. Math. Anal. 46, 1317–1347 (2014)

    MathSciNet  Google Scholar 

  40. Mielke, A., Roubíček, T.: Thermoviscoelasticity in Kelvin–Voigt rheology at large strains. Arch. Ration. Mech. Anal. 238, 1–45 (2020)

    MathSciNet  Google Scholar 

  41. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    MathSciNet  Google Scholar 

  42. Nečas, J.: Theory of multipolar fluids. In: Jentsch, L., Tröltzsch, F. (eds.) Problems and Methods in Mathematical Physics. pp. 111–119. Vieweg+Teubner, Wiesbaden (1994)

  43. Nečas, J., Novotný, A., Šilhavý, M.: Global solution to the compressible isothermal multipolar fluid. J. Math. Anal. Appl. 162, 223–241 (1991)

    MathSciNet  Google Scholar 

  44. Nečas, J., R\(\mathring{\rm u}\)žička, M.: Global solution to the incompressible viscous-multipolar material problem. J. Elast. 29, 175–202 (1992)

  45. Ogden, R.W.: Non-Linear Elastic Deformations. Dover Publications, Mineola, New York (1984)

    Google Scholar 

  46. Pavelka, M., Peshkov, I., Klika, V.: On Hamiltonian continuum mechanics. Physica D 408, 132510 (2020)

    MathSciNet  Google Scholar 

  47. Podio-Guidugli, P., Vianello, M.: Hypertractions and hyperstresses convey the same mechanical information. Continuum Mech. Thermodyn. 22, 163–176 (2010)

    MathSciNet  Google Scholar 

  48. Pr\(\mathring{\rm u}\)ša, V., T\(\mathring{\rm u}\)ma, K.: Temperature field and heat generation at the tip of a cutout in a viscoelastic solid body undergoing loading. Appl. Eng. Sci. 6, 100054 (2021)

  49. Prohl, A.: Convergence of a finite element-based space-time discretization in elastodynamics. SIAM J. Numer. Anal. 46, 2469–2483 (2008)

    MathSciNet  Google Scholar 

  50. Qian, J., Zhang, Z.: Global well-posedness for compressible viscoelastic fluids near equilibrium. Arch. Ration. Mech. Anal. 198, 835–868 (2010)

    MathSciNet  Google Scholar 

  51. R\(\mathring{\rm u}\)žička, M.: Mathematical and physical theory of multipolar viscoelasticity. Bonner Mathematische Schriften 233, Bonn (1992)

  52. Rieger, M.O.: Young measure solutions for nonconvex elastodynamics. SIAM J. Math. Anal. 34, 1380–1398 (2003)

    MathSciNet  Google Scholar 

  53. Roubíček, T.: Nonlinear Partial Differential Equations with Applications, 2nd edn. Birkhäuser, Basel (2013)

    Google Scholar 

  54. Roubíček, T.: Quasistatic hypoplasticity at large strains Eulerian. J. Nonlinear Sci. 32, 45 (2022)

    MathSciNet  Google Scholar 

  55. Roubíček, T.: Visco-elastodynamics at large strains Eulerian. Z. fur Angew. Math. Phys. 73, 80 (2022)

    MathSciNet  Google Scholar 

  56. Roubíček, T.: Some gradient theories in linear visco-elastodynamics towards dispersion and attenuation of waves in relation to large-strain models. (2023). (Preprint arXiv:2309.05089)

  57. Roubíček, T., Stefanelli, U.: Finite thermoelastoplasticity and creep under small elastic strain. Math. Mech. Solids 24, 1161–1181 (2019)

    MathSciNet  Google Scholar 

  58. Roubíček, T., Stefanelli, U.: Visco-elastodynamics of solids undergoing swelling at large strains by an Eulerian approach. SIAM J. Math. Anal. 55, 2475–2876 (2023)

    MathSciNet  Google Scholar 

  59. Roubíček, T., Tomassetti, G.: Dynamics of charged elastic bodies under diffusion at large strains. Discrete Cont. Dynam. Syst. B 25, 1415–1437 (2020)

    MathSciNet  Google Scholar 

  60. Šilhavý, M.: Multipolar viscoelastic materials and the symmetry of the coefficient of viscosity. Appl. Math. 37, 383–400 (1992)

    MathSciNet  Google Scholar 

  61. Šilhavý, M.: The Mechanics and Thermodynamics of Continuous Media. Springer, Berlin (1997)

    Google Scholar 

  62. Toupin, R.A.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    MathSciNet  Google Scholar 

  63. Truesdell, C.: Rational Thermodynamics. McGraw-Hill, New York (1969)

    Google Scholar 

  64. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics. Springer, Berlin (1965)

    Google Scholar 

  65. Tvedt, B.: Quasilinear equations for viscoelasticity of strain-rate type. Arch. Ration. Mech. Anal. 189, 237–281 (2008)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Roubíček.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Support from MŠMT ČR (Ministry of Education of the Czech Republic) project CZ.02.1.01/0.0/0.0/15-003/0000493, CSF Grant No. 23-06220 S, and from the institutional support RVO:61388998 (ČR) is acknowledged.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roubíček, T. Thermodynamics of viscoelastic solids, its Eulerian formulation, and existence of weak solutions. Z. Angew. Math. Phys. 75, 51 (2024). https://doi.org/10.1007/s00033-023-02175-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-023-02175-7

Keywords

Mathematics Subject Classification

Navigation