Skip to main content
Log in

A New Strategy for the Synthesis of Highly Active Catalysts Based on g-C3N4 for Photocatalytic Production of Hydrogen under Visible Light

  • PHYSICAL CHEMISTRY
  • Published:
Doklady Physical Chemistry Aims and scope Submit manuscript

Abstract

Materials based on graphite-like carbon nitride g‑C3N4 were synthesized by heat treatment of a mixture of melamine and urea, and the effect of synthesis conditions on the photocatalytic activity of the samples was studied at various melamine : urea ratios. Platinum (1 wt %) was deposited on the surface of the synthesized g‑C3N4 samples as a cocatalyst. The produced photocatalysts were characterized by X-ray powder diffraction analysis, diffuse reflectance UV-Vis spectroscopy, and low-temperature nitrogen adsorption. Photocatalytic activity was determined in the reaction of hydrogen evolution from an aqueous solution of triethanolamine (10 vol %) upon irradiation with visible light (λ = 425 nm). Optimal conditions for the synthesis of the photocatalyst 1% Pt/g-C3N4 were found, which was obtained by calcination of a mixture of melamine and urea (1 : 3) and ensured an H2 evolution rate of 5.0 mmol g–1 h–1 at an apparent quantum efficiency of 2.5%. The developed synthetic approach produces highly active catalysts because, during the synthesis, an intermediate supramolecular complex melamine–cyanuric acid is formed, which, upon further heating, is converted into g-C3N4 characterized by a high specific surface area exceeding 100 m2 g–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Ran, J., Zhang, J., Yu, J., Jaroniec, M., and Qiao, S.Z., Chem. Soc. Rev., 2014, vol. 43. pp. 7787–7812. https://doi.org/10.1039/C3CS60425J

    Article  CAS  PubMed  Google Scholar 

  2. Wu, L.Z., Chen, B., Li, Z.J., and Tung, C.H., Acc. Chem. Res., 2014, vol. 47, pp. 2177–2185. https://doi.org/10.1021/ar500140r

    Article  CAS  PubMed  Google Scholar 

  3. Zamaraev, K.I. and Parmon, V.N., Catal. Rev. Sci. Eng., 1980, vol. 22, pp. 261–324. https://doi.org/10.1080/03602458008066536

    Article  CAS  Google Scholar 

  4. Acar, C., Dincer, I., and Naterer, G.F., Int. J. Energy Res., 2016, vol. 40. pp. 1449–1473. https://doi.org/10.1002/er.3549

    Article  CAS  Google Scholar 

  5. Kozlova, E.A. and Parmon, V.N., Russ. Chem. Rev., 2017, vol. 86, pp. 870–906. https://doi.org/10.1070/rcr4739

    Article  CAS  ADS  Google Scholar 

  6. Yakushev, A.A., Abel, A.S., Averin, A.D., Beletskaya, I.P., Cheprakov, A.V., Ziankou, I.S., Bonneviot, L., and Bessmertnykh-Lemeune, A., Coord. Chem. Rev., 2022. vol. 458. pp. 214331. https://doi.org/10.1016/j.ccr.2021.214331

    Article  CAS  Google Scholar 

  7. Zenkov, I.S., Yakushev, A.A., Abel, A.S., Averin, A.D., Bessmertnykh-Lemeune, A.G., and Beletskaya, I.P., Russ. J. Org. Chem., 2021, vol. 57, pp. 1398–1404. https://doi.org/10.1134/S1070428021090025

    Article  CAS  Google Scholar 

  8. Morozkov, G.V., Abel, A.S., Filatov, M.A., Nefedov, S.E., Roznyatovsky, V.A., Cheprakov, A.V., Mitrofanov, A.Yu., Ziankou, I.S., Averin, A.D., Beletskaya, I.P., Michalak, J., Bucher, C., Bonneviot, L., and Bessmertnykh-Lemeune, A., Dalton Trans., 2022. vol. 51. pp. 13612–13630. https://doi.org/10.1039/D2DT01364A

    Article  CAS  PubMed  Google Scholar 

  9. Wang, X., Chen, L., Chong, S.Y., Little, M.A., Wu, Y., Zhu, W.H., Clowes, R., Yan, Y., Zwijnenburg, M.A., Sprick, R.S., and Cooper, A.I., Nature Chem., 2018, vol. 10, pp. 1180–1189. https://doi.org/10.1038/s41557-018-0141-5

    Article  CAS  ADS  Google Scholar 

  10. Hu, Z., Shen, Z., and Jimmy, C.Y., Green Chem., 2017, vol. 19, pp. 588–613. https://doi.org/10.1039/C6GC02825J

    Article  CAS  Google Scholar 

  11. Corredor, J., Rivero, M.J., Rangel, C.M., Gloaguen, F., and Ortiz, I., J. Chem. Technol. Biotechnol., 2019, vol. 94, pp. 3049–3063. https://doi.org/10.1002/jctb.6123

    Article  CAS  Google Scholar 

  12. Matsumura, M., Saho, Y., Tsubomura, H., J. Phys. Chem., 1983. vol. 87. pp. 3807–3808. https://doi.org/10.1021/j100243a005

    Article  CAS  Google Scholar 

  13. Hayat, A., Syed, J.A.S., Al-Sehemi, A.G., El-Nasser, K.S., Taha, T.A., Al-Ghamdi, A.A., Amin, M.A., Ajmal, Z., Iqbal, W., Palamanit, A., Medina, D.I., Nawawi, W.I., and Sohail, M., Int. J. Hydrogen Energy, 2022, vol. 47, pp. 10837–10867. https://doi.org/10.1016/j.ijhydene.2021.11.252

    Article  CAS  Google Scholar 

  14. Zhu, B., Cheng, B., Fan, J., Ho, W., and Yu, J., Small Struct., 2021, vol. 2, pp. 2100086. https://doi.org/10.1002/sstr.202100086

    Article  CAS  Google Scholar 

  15. Vasilchenko, D., Zhurenok, A., Saraev, A., Gerasimov, E., Cherepanova, S., Tkachev, S., Plusnin, P., and Kozlova, E., Chem. Eng. J., 2022, vol. 445, pp. 136721. https://doi.org/10.1016/j.cej.2022.136721

    Article  CAS  Google Scholar 

  16. Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., Domen, K., and Antonietti, M., Nature Mater., 2009, vol. 8, pp. 76–80. https://doi.org/10.1038/nmat2317

    Article  CAS  ADS  Google Scholar 

  17. Ye, S., Wang, R., Wu, M.Z., and Yuan, Y.P., Appl. Surf. Sci., 2015, pp. 15–27. https://doi.org/10.1016/J.APSUSC.2015.08.173

  18. Topchiyan, P., Vasilchenko, D., Tkachev, S., Sheven, D., Eltsov, I., Asanov, I., Sidorenko, N., Saraev, A., Gerasimov, E., Kurenkova, A., and Kozlova, E., ACS Appl. Mater. Interfaces, 2022, vol. 14, pp. 35600–35612. https://doi.org/10.1021/ACSAMI.2C07485

    Article  CAS  PubMed  Google Scholar 

  19. Cao, S., Low, J., Yu, J., and Jaroniec, M., Adv. Mater., 2015, vol. 27, pp. 2150–2176. https://doi.org/10.1002/adma.201500033

    Article  CAS  PubMed  Google Scholar 

  20. Zhong, Y., Wang, Z., Feng, J., Yan, S., Zhang, H., Li, Z., and Zou, Z., Appl. Surf. Sci., 2014, vol. 295, pp. 253–259. https://doi.org/10.1016/J.APSUSC.2014.01.008

    Article  CAS  ADS  Google Scholar 

  21. Zhu, B., Xia, pp., Ho, W., and Yu, J., Appl. Surf. Sci., 2015, vol. 344, pp. 188–195. https://doi.org/10.1016/J.APSUSC.2015.03.086

    Article  CAS  ADS  Google Scholar 

  22. Zhurenok, A.V., Vasilchenko, D.B., and Kozlova, E.A., Int. J. Mol. Sci., 2023, vol. 24, p. 346. https://doi.org/10.3390/IJMS24010346

    Article  CAS  Google Scholar 

  23. Han, C., Gao, Y., Liu, S., Ge, L., Xiao, N., Dai, D., Xu, B., and Chen, C., Int. J. Hydrogen Energy, 2017, vol. 42, pp. 22765–22775. https://doi.org/10.1016/J.IJHYDENE.2017.07.154

    Article  CAS  Google Scholar 

  24. Tian, X., Sun, Y.-J., He, J.-Y., Wang, X.-J., Zhao, J., Qiao, S.-Z., and Li, F.-T., J. Mater. Chem. A, 2019, vol. 7, pp. 7628–7635. https://doi.org/10.1039/C9TA00129H

    Article  CAS  Google Scholar 

  25. Niu, pp., Yin, L.C., Yang, Y.Q., Liu, G., and Cheng, H.M., Adv. Mater., 2014, vol. 26, pp. 8046–8052. https://doi.org/10.1002/ADMA.201404057

  26. Bian, S.W., Ma, Z., and Song, W.G., J. Phys. Chem. C, 2009, vol. 113, pp. 8668–8672. https://doi.org/10.1021/JP810630K

    Article  CAS  Google Scholar 

  27. Wang, J., Zhang, C., Shen, Y., Zhou, Z., Yu, J., Li, Y., Wei, W., Liu, S., and Zhang, Y., J. Mater. Chem. A, 2015, vol. 3, pp. 5126–5131. https://doi.org/10.1039/C4TA06778A

    Article  CAS  Google Scholar 

  28. Zhuang, J., Lai, W., Xu, M., Zhou, Q., and Tang, D., ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 8330–8338. https://doi.org/10.1021/ACSAMI.5B01923

    Article  CAS  PubMed  Google Scholar 

  29. Li, X., Wen, J., Low, J., Fang, Y., and Yu, J., Sci. China Mater., 2014, vol. 57, pp. 70–100. https://doi.org/10.1007/S40843-014-0003-1

    Article  Google Scholar 

  30. Li, R., Cui, X., Bi, J., Ji, X., Li, X., Wang, N., Huang, Y., Huang, X., and Hao, H., RSC Adv., 2021, vol. 11, pp. 23459–23470. https://doi.org/10.1039/d1ra03524j

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. de Avila, S.G., Logli, M.A., and Matos, J.R., Int. J. Greenhouse Gas Control, 2015, vol. 42, pp. 666–671. https://doi.org/10.1016/J.IJGGC.2015.10.001

    Article  CAS  Google Scholar 

  32. Cui, Y., Zhang, J., Zhang, G., Huang, J., Liu, P., Antonietti, M., and Wang, X., J. Mater. Chem., 2011, vol. 21, pp. 13032–13039. https://doi.org/10.1039/C1JM11961C

    Article  CAS  Google Scholar 

  33. Xu, Q., Ma, D., Yang, S., Tian, Z., Cheng, B., and Fan, J., Appl. Surf. Sci., 2019, vol. 495, p. 143555. https://doi.org/10.1016/J.APSUSC.2019.143555

    Article  CAS  Google Scholar 

  34. Li, Y., Zhong, J., and Li, J., Int. J. Hydrogen Energy, 2022, vol. 47, pp. 39886–39897. https://doi.org/10.1016/J.IJHYDENE.2022.09.147

    Article  CAS  Google Scholar 

  35. Wang, X., Zhou, C., Shi, R., Liu, Q., Waterhouse, G.I.N., Wu, L., Tung, C.H., and Zhang, T., Nano Res., 2019, vol. 12, pp. 2385–2389. https://doi.org/10.1007/S12274-019-2357-0

    Article  CAS  Google Scholar 

  36. Ding, J., Sun, X., Wang, Q., Li, D., Li, X., Li, X., Chen, L., Zhang, X., Tian, X., and Ostrikov, K., J. Alloys Compd., 2021, vol. 873, p. 159871. https://doi.org/10.1016/J.JALLCOM.2021.159871

    Article  CAS  Google Scholar 

  37. Han, C., Su, pp., Tan, B., Ma, X., Lv, H., Huang, C., Wang, P., Tong, Z., Li, G., Huang, Y., and Liu, Z., J. Colloid Interface Sci., 2021, vol. 581, pp. 159–166. https://doi.org/10.1016/J.JCIS.2020.07.119

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Rao, F., Zhong, J., and Li, J., Ceram. Int., 2022, vol. 48, pp. 1439–1445. https://doi.org/10.1016/J.CERAMINT.2021.09.130

    Article  CAS  Google Scholar 

  39. Xu, Q., Cheng, B., Yu, J., and Liu, G., Carbon, 2017, vol. 118, pp. 241–249. https://doi.org/10.1016/J.CARBON.2017.03.052

    Article  CAS  Google Scholar 

  40. Yang, L., Huang, J., Shi, L., Cao, L., Yu, Q., Jie, Y., Fei, J., Ouyang, H., and Ye, J., Appl. Catal., vol. 204, pp. 335–345. https://doi.org/10.1016/J.APCATB.2016.11.047

  41. Alcudia-Ramos, M.A., Fuentez-Torres, M.O., Ortiz-Chi, F., Espinosa-Gonzalez, C.G., Hernandez-Como, N., Garcia-Zaleta, D.S., Kesarla, M.K., Torres-Torres, J.G., Collins-Martinez, V., and Godavarthi, S., Ceram. Int., 2020, vol. 46, pp. 38–45. https://doi.org/10.1016/J.CERAMINT.2019.08.228

    Article  CAS  Google Scholar 

  42. Bi, L., Zhang, R., Zhang, K., Lin, Y., Wang, D., Zou, X., and Xie, T., ACS Sustain. Chem. Eng., 2019, vol. 7, pp. 15137–15145. https://doi.org/10.1021/ACSSUSCHEMENG.9B04153

    Article  CAS  Google Scholar 

  43. Zhang, S., Gao, M., Zhai, Y., Wen, J., Yu, J., He, T., Kang, Z., and Lu, S., J. Colloid Interface Sci., 2022, vol. 622, pp. 662–674. https://doi.org/10.1016/J.JCIS.2022.04.165

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Lin, Q., Li, Z., Lin, T., Li, B., Liao, X., Yu, H., and Yu, C., Chin. J. Chem. Eng., 2020, vol. 28, pp. 2677–2688. https://doi.org/10.1016/J.CJCHE.2020.06.037

    Article  CAS  Google Scholar 

  45. Vasilchenko, D., Zhurenok, A., Saraev, A., Gerasimov, E., Cherepanova, S., Kovtunova, L., Tkachev, S., and Kozlova, E., Int. J. Hydrogen Energy, 2022, vol. 47, pp. 11326–11340. https://doi.org/10.1016/J.IJHYDENE.2021.09.253

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank D.B. Vasil’chenko for recording diffuse reflectance spectra and A.B. Ayupov for studying the textural characteristics of photocatalysts.

Funding

This work was supported by the Russian Science Foundation (project no. 21-13-00314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kozlova.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Dedicated to the Anniversary of Academician Irina Petrovna Beletskaya

Translated by V. Glyanchenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potapenko, K.O., Cherepanova, S.V. & Kozlova, E.A. A New Strategy for the Synthesis of Highly Active Catalysts Based on g-C3N4 for Photocatalytic Production of Hydrogen under Visible Light. Dokl Phys Chem 513, 167–175 (2023). https://doi.org/10.1134/S0012501623700112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012501623700112

Keywords:

Navigation