Skip to main content
Log in

Electroluminescence Properties of Rare-Earth Metal Complexes with Organic Ligands

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

This review article explores and analyzes published data on the photoluminescence and electroluminescence characteristics of rare earth element (REE) complex compounds, which are promising materials for creating highly efficient OLED devices. Distinguishing features of such compounds include their narrow emission bands, Stokes shift, long lifetime, and high quantum yields, enabling high resolution and color purity in constructed OLED devices. Using REE complexes as emissive layers in light-emitting diodes ensures significant color saturation and high device efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Kido, J. and Okamoto, Y., Chem. Rev., 2002, vol. 102, p. 2357.

    Article  CAS  PubMed  Google Scholar 

  2. Katkova, M.A., Vitukhnovsky, A.G., and Bochkarev, M.N., Russ. Chem. Rev., 2005, vol. 74, p. 1089.

    Article  ADS  CAS  Google Scholar 

  3. de Bettencourt-Dias, A., Dalton Trans., 2007, 2229.

  4. Bian, Z.Q., Huang, C.H., in: Highly Efficient OLEDs with Phosphorescent Materials, Yersin, H., Ed., Weinheim: Wiley, 2008, Ch. 12, рр. 391.

    Google Scholar 

  5. Pereira, L., Organic Light Emitting Diodes: The Use of Rare Earth and Transition Metals, Singapore: Pan Stanford, 2012.

    Book  Google Scholar 

  6. Rare-Earth-Activated Phosphors: Chemistry and Applications, Netherlands: Elsevier, 2022.

  7. Swart, H.C., Dhoble, S.J., and Kalyani, N.T., Principles and Applications of Organic Light Emitting Diodes (OLEDs), Netherlands: Elsevier, 2017.

    Google Scholar 

  8. Lanthanide-Based Multifunctional Materials: From OLEDs to SIMs, Martın-Ramos, M. and Ramos, S., Eds., Netherlands: Elsevier, 2018.

  9. Utochnikova, V., Lyuminestsentsiya organicheskikh, metallorganicheskikh i koordinatsionnykh soedinenii (Liminescence of Organic, Organometallic, and Coordination Compounds), Russia: LitRes, 2018.

    Google Scholar 

  10. Li, S., Zhou, L., and Zhang, H., Light Sci. Appl., 2022, vol. 11, p. 177. https://doi.org/10.1038/s41377-022-00866-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kido, J., Nagai, K., and Ohashi, Y., Chem. Lett., 1990, p. 657.

  12. Kido, J., Nagai, K., Okamoto, Y., and Skotheim, T., Chem. Lett., 1991, p. 1267.

  13. Kenyon, A.J., Prog. Quantum. Electron., 2002, vol. 26, p. 225.

    Article  ADS  CAS  Google Scholar 

  14. Sano, T., Fujita, M., Fujii, T., et al., Jpn. J. Appl. Phys., 1995, vol. 34, p. 1883.

    Article  ADS  CAS  Google Scholar 

  15. Kido, J., Hayase, H., Hongawa, K., and Nagai, K., Appl. Phys. Lett., 1994, vol. 65, p. 2124.

    Article  ADS  CAS  Google Scholar 

  16. Yu, J., Zhou, L., Zhang, H., et al., Inorg. Chem., 2005, vol. 44, no. 5, p. 1611.

    Article  CAS  PubMed  Google Scholar 

  17. Sun, P.P., Duan, J.P., Lih, J.J., and Cheng, C.H., Adv. Funct. Mater., 2003, vol. 13, no. 9, p. 681.

    Article  Google Scholar 

  18. Kido, J., Ikeda, W., Kimura, M., and Nagai, K., Jpn. J. Appl. Phys., 1996, vol. 35, p. L394.

    Article  ADS  CAS  Google Scholar 

  19. Huang, L., Wang, K.-Z., Huang, C.-H., et al., Synth. Met., 2002, vol. 128, p. 241.

    Article  CAS  Google Scholar 

  20. Wang, K., Huang, L., Gao, L., and Jin, L., Solid State Commun., 2002, vol. 122, p. 233.

    Article  ADS  CAS  Google Scholar 

  21. Hu, W., Matsumura, M., Wang, M., and Jin, L., Appl. Phys. Lett., 2000, vol. 77, vol. 26, p. 4271.

  22. Wang, J., Wang, R., Yang, J., et al., J. Am. Chem. Soc., 2001, vol. 123, p. 6179.

    Article  CAS  PubMed  Google Scholar 

  23. Robinson, M.R., O’Regan, M.B., and Bazan, G.C., Chem. Commun., 2000, p. 1645.

  24. Noto, M., Irie, K., and Era, M., Chem. Lett., 2001, no. 4, p. 320.

  25. Sun, M., Xin, H., Wang, K.-Z., et al., Chem. Commun., 2003, p. 702.

  26. Guan, M., Bian, Z.Q., Li, F.Y., et al., New J. Chem., 2003, vol. 27, p. 1731.

    Article  CAS  Google Scholar 

  27. McGehee, M.D., Bergstedt, T., Chi Zhang, et al., Adv. Mater., 1999, vol. 11, no. 16, p. 1349.

    Article  CAS  Google Scholar 

  28. Liang, C.J., Li, W.L., Hong, Z.R., et al., Synth. Met., 1997, vol. 91, p. 151.

    Article  CAS  Google Scholar 

  29. Zhang, X.M., Sun, R.G., Zheng, Q.B., et al., Appl. Phys. Lett., 1997, vol. 71, p. 2596.

    Article  ADS  CAS  Google Scholar 

  30. Kido, J., Ikeda, W., Kimura, M., and Nagai, K., Jpn. J. Appl. Phys., 1996, vol. 35, p. L394.

    Article  ADS  CAS  Google Scholar 

  31. Reyes, R., Cremona, M., Teotonio, E.E.S., et al., Chem. Phys. Lett., 2004, vol. 396, p. 54.

    Article  ADS  CAS  Google Scholar 

  32. Hong, Z.R., Li, W.L., Zhao, D.X., et al., Synth. Met., 2000, vols. 111–112, p. 43.

    Article  Google Scholar 

  33. You, H. and Ma, D.G., J. Phys. D: Appl. Phys., 2008, vol. 41, p. 155113.

    Article  ADS  Google Scholar 

  34. Xin, H., Li, F.Y., Shi, M., et al., J. Am. Chen. Soc., 2003, vol. 125, p. 7166.

    Article  CAS  Google Scholar 

  35. Fedichkina, A.D., Koshelev, D.S., Vashchenko, A.A., et al., J. Lumin., 2022, vol. 244, p. 118702.

    Article  CAS  Google Scholar 

  36. Kovalenko, A., Tcelykh, L.O., Koshelev, D., et al., Dalton Trans., 2022, vol. 51, no. 10, p. 3833. https://doi.org/10.1039/D1DT04033B

    Article  CAS  PubMed  Google Scholar 

  37. Tcelykh, L.O., Vashchenko, A.A., Medved’ko, A.V., et al., J. Mater. Chem. C, 2022, vol. 10, no. 4, p. 1371. https://doi.org/10.1039/D1TC04600D

    Article  CAS  Google Scholar 

  38. Kovalenko, A., Rublev, P.O., Tcelykh, L.O., et al., Chem. Mater., 2019, vol. 31, no. 3, p. 759. https://doi.org/10.1021/acs.chemmater.8b03675

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (state assignment in the sphere of scientific activities for 2023 no. FENW-2023-0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Vlasenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ADDITIONAL INFORMATION

The article represents an updated and revised Chapter 6.6 of the book by A.S. Burlov, V.G. Vlasenko, D.A. Garnovskiy, A.I. Uraev, E.I. Maltsev, D.A. Lypenko, and A.V. Vannikov, Electroluminescent Organic Light-Emitting Diodes Based on Metal Coordination Compounds, Rostov-on-Don: Yuzhn. Fed. Univ., 2015; ISBN 978-5-9275-1469-4.The article additionally includes a review of recent years (2019−2022) focusing on a series of new coordination compounds of lanthanides LnpXmLk (Ln = Eu, Gd, Tb, Lu, Yb, Er; X = Cl, NO3; p = 1, 2; k = 1−3; m = 0−3) with arylhydrazone derivatives of 2-(N-tosylamino)benzaldehyde, exhibiting photoluminescence in the near-IR range with quantum yields of up to 1.3% and serving as promising IR phosphors for bioimaging. High-efficiency OLED devices were manufactured based on these compounds, with performance metrics, for example, for ytterbium complexes, that set records for such devices.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burlov, A.S., Vlasenko, V.G., Garnovskii, D.A. et al. Electroluminescence Properties of Rare-Earth Metal Complexes with Organic Ligands. Russ J Coord Chem 49 (Suppl 1), S88–S96 (2023). https://doi.org/10.1134/S1070328423600869

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328423600869

Keywords:

Navigation