Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T14:08:11.690Z Has data issue: false hasContentIssue false

HISTORIC LIME MORTARS COMPOSITION AND TERMINOLOGY FOR RADIOCARBON DATING—CASE STUDIES BASED ON THIN-SECTION PETROGRAPHY AND CATHODOLUMINESCENCE

Published online by Cambridge University Press:  27 February 2024

Marine Wojcieszak*
Affiliation:
Royal Institute for Cultural Heritage (RICH/KIK-IRPA), 1 Parc du Cinquantenaire, 1000 Brussels, Belgium Evolutionary Studies Institute (ESI), University of the Witwatersrand, Johannesburg, South Africa
Laurent Fontaine
Affiliation:
Royal Institute for Cultural Heritage (RICH/KIK-IRPA), 1 Parc du Cinquantenaire, 1000 Brussels, Belgium
Jan Elsen
Affiliation:
Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven (KU Leuven), Belgium
Roald Hayen
Affiliation:
Royal Institute for Cultural Heritage (RICH/KIK-IRPA), 1 Parc du Cinquantenaire, 1000 Brussels, Belgium
Alexander Lehouck
Affiliation:
Abdijmuseum Ten Duinen, Koksijde, Belgium
Mathieu Boudin
Affiliation:
Royal Institute for Cultural Heritage (RICH/KIK-IRPA), 1 Parc du Cinquantenaire, 1000 Brussels, Belgium

Abstract

Since the first developments of anthropogenic lime materials radiocarbon (14C) dating in the 1960s, numerous studies have been undertaken and developed to investigate the topic further. Historic mortars are complex composite and open system materials that can incorporate a large range of components. Due to the complexity of the historic lime mortars composition, they are not part of a routine protocol in most radiocarbon laboratories and reliable dating is not always achieved. A thorough characterization needs to be performed and different preparation methods can be considered as a function of their compositions. A vast range of terms are employed to qualify the lime mortars components and alterations that can possibly have an influence on the dating result. Here, a detailed description of these components and the various terms used is listed. To illustrate this, images obtained by thin-section petrography and cathodoluminescence are presented in addition to radiocarbon results using stepwise acid hydrolysis on Belgian mortars having different provenance, state, age and composition. Depending on the type of aggregate used, the type of binder and its conservation state, the eventual presence of weathering carbonates and the assumed speed of the carbonation process, the reliability of radiocarbon measurements using the stepwise acid hydrolysis technique is discussed and confronted with presumed historical constraints.

Type
Conference Paper
Copyright
© Royal Institute for Cultural Heritage (RICH-KIK-IRPA), 2024. Published by Cambridge University Press on behalf of University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 24th Radiocarbon and 10th Radiocarbon & Archaeology International Conferences, Zurich, Switzerland, 11–16 Sept. 2022.

References

REFERENCES

Addis, A, Secco, M, Marzaioli, F, Artioli, G, Arnau, AC, Passariello, I, Terrasi, F, Brogiolo, GP. 2019. Selecting the most reliable 14C dating material inside mortars: the origin of the Padua Cathedral. Radiocarbon 61(2):375393.CrossRefGoogle Scholar
Al-Bashaireh, K. 2013. Plaster and mortar radiocarbon dating of Nabatean and Islamic structures, South Jordan. Archaeometry 55(2):329354.CrossRefGoogle Scholar
Artioli, G, Secco, M, Addis, A, Bellotto, M. 2017. Role of hydrotalcite-type layered double hydroxides in delayed pozzolanic reactions and their bearing on mortar dating. Cementitious Materials: Composition, Properties, Application 147–158.Google Scholar
Asscher, Y, van Zuiden, A, Elimelech, C, Gendelman, P, Sharvit, J, Secco, M, Ricci, G, Artioli, G. 2020. Prescreening hydraulic lime-binders for disordered calcite in Caesarea Maritima: characterizing the chemical environment using FTIR. Radiocarbon 62(3):527543.CrossRefGoogle Scholar
Bakolas, A, Biscontin, G, Moropoulou, A, Zendri, E. 1995. Characterization of the lumps in the mortars of historic masonry. Thermochimica Acta 269:809816.CrossRefGoogle Scholar
Barrett, GT, Allen, K, Reimer, PJ, Ringbom, Å, Olsen, J, Lindroos, A. 2023. Ramped pyrolysis radiocarbon dating of lime lumps: establishing the earliest mortar-based construction phase of Turku cathedral, Finland. Journal of Cultural Heritage 61:201210. https://doi.org/10.1016/j.culher.2023.04.004 CrossRefGoogle Scholar
Barrett, GT, Keaveney, E, Lindroos, A, Donnelly, C, Daugbjerg, TS, Ringbom, Å, Olsen, J, Reimer, P. J. 2021. Ramped pyroxidation: A new approach for radiocarbon dating of lime mortars. Journal of Archaeological Science 129:105366.CrossRefGoogle Scholar
Böke, H, Akkurt, S, İpekoğlu, B, Uğurlu, E. 2006. Characteristics of brick used as aggregate in historic brick-lime mortars and plasters. Cement and Concrete Research 36(6):11151122.CrossRefGoogle Scholar
Boudin, M, Van Strydonck, M, van den Brande, T, Synal, H-A, Wacker, L. 2015. RICH–a new AMS facility at the Royal Institute for Cultural Heritage, Brussels, Belgium. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 361:120123.CrossRefGoogle Scholar
Brabcová, KP, Kundrát, P, Krofta, T, Suchỳ, V, Petrová, M, John, D, Kozlovcev, P, Kotková, K, Fialová, A, Kubančák, J. 2023. Extensive survey on radiocarbon dating of organic inclusions in medieval mortars in the Czech Republic. Radiocarbon. https://doi.org/10.1017/RDC.2023.56 CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Bruni, S, Cariati, F, Fermo, P, Cairati, P, Alessandrini, G, Toniolo, L. 1997. White lumps in fifth-to seventeenth-century ad mortars from northern Italy. Archaeometry 39(1):17.CrossRefGoogle Scholar
Carmine, L, Caroselli, M, Lugli, S, Marzaioli, F, Nonni, S, Dori, SM, Terrasi, F. 2015. AMS radiocarbon dating of mortar: The case study of the medieval UNESCO site of Modena. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 361:614619.CrossRefGoogle Scholar
Caroselli, M, Hajdas, I, Cassitti, P. 2020. Radiocarbon dating of dolomitic mortars from the convent Saint John, Müstair (Switzerland): first results. Radiocarbon 62(3):601615. https://doi.org/10.1017/RDC.2020.35 CrossRefGoogle Scholar
Daugbjerg, TS, Lindroos, A, Hajdas, I, Ringbom, Å, Olsen, J. 2021a. Comparison of thermal decomposition and sequential dissolution—two sample preparation methods for radiocarbon dating of lime mortars. Radiocarbon 63(2):405427.CrossRefGoogle Scholar
Daugbjerg, TS, Lindroos, A, Heinemeier, J, Ringbom, Å, Barrett, G, Michalska, D, Hajdas, I, Raja, R, Olsen, J. 2021b. A field guide to mortar sampling for radiocarbon dating. Archaeometry 63(5):11211140. https://doi.org/10.1111/arcm.12648 CrossRefGoogle Scholar
Dyda, M, Pyzik, A, Wilkojc, E, Kwiatkowska-Kopka, B, Sklodowska, A. 2019. Bacterial and fungal diversity inside the medieval building constructed with sandstone plates and lime mortar as an example of the microbial colonization of a nutrient-limited extreme environment (Wawel royal castle, Krakow, Poland). Microorganisms 7(10):416.CrossRefGoogle ScholarPubMed
Elsen, J. 2006. Microscopy of historic mortars—a review. Cement and Concrete Research 36(8):14161424.CrossRefGoogle Scholar
Folk, RL, Valastro, S. 1976. Successful technique for dating of lime mortar by carbon-14. Journal of Field Archaeology 3(2):195201.CrossRefGoogle Scholar
Fontaine, L, Roald, H, Sebastiaan, G, Hilde, DC. 2014. Paper 5: Historic Mortars from the Coudenberg Archaeological Site: Characterization and Source of Raw Materials. Conservation and Management of Archaeological Sites 16(1):7184. https://doi.org/10.1179/1350503314Z.00000000071CrossRefGoogle Scholar
Forster, AM. 2004. How hydraulic lime binders work (Scottish Lime Centre Trust). Love Your Building Publishing.Google Scholar
Friesem, DE, Abadi, I, Shaham, D, Grosman, L. 2019. Lime plaster cover of the dead 12,000 years ago–new evidence for the origins of lime plaster technology. Evolutionary Human Sciences, 1.Google Scholar
Hajdas, I, Lindroos, A, Heinemeier, J, Ringbom, Å, Marzaioli, F, Terrasi, F, Passariello, I, Capano, M, Artioli, G, Addis, A. 2017. Preparation and dating of mortar samples—Mortar Dating Inter-comparison Study (MODIS). Radiocarbon 59(6):18451858.CrossRefGoogle Scholar
Hale, J, Heinemeier, J, Lancaster, L, Lindroos, A, Ringbom, Å. 2003. Dating Ancient Mortar: Although radiocarbon dating is usually applied to organic remains, recent work shows that it can also reveal the age of some inorganic building materials. American Scientist 91(2):130137.CrossRefGoogle Scholar
Hayen, R, Van Strydonck, M, Boaretto, E, Lindroos, A, Heinemeier, J, Ringbom, Å, Hueglin, S, Michalska, D, Hajdas, I, Marzaoili, F. 2016. Absolute dating of mortars–integrating chemical and physical techniques to characterize and select the mortar samples. Proceedings of the 4th Historic Mortars Conference-HMC2016 656–667.Google Scholar
Hayen, R, Van Strydonck, M, Fontaine, L, Boudin, M, Lindroos, A, Heinemeier, J, Ringbom, Å, Michalska, D, Hajdas, I, Hueglin, S, Marzaioli, F, Terrasi, F, Passariello, I, Capano, M, Maspero, F, Panzeri, L, Galli, A, Artioli, G, Addis, A, Caroselli, M. 2017. Mortar dating methodology: assessing recurrent issues and needs for further research. Radiocarbon 59(6):18591871.CrossRefGoogle Scholar
Heinemeier, J, Jungner, H, Lindroos, A, Ringbom, Å, von Konow, T, Rud, N. 1997. AMS 14C dating of lime mortar. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 123(1–4):487495.CrossRefGoogle Scholar
Heinemeier, J, Ringbom, Å, Lindroos, A, Sveinbjörnsdóttir, ÁE. 2010. Successful AMS 14C dating of non-hydraulic lime mortars from the medieval churches of the Åland Islands, Finland. Radiocarbon 52(1):171204.CrossRefGoogle Scholar
Hughes, JJ, Cuthbert, SJ. 2000. The petrography and microstructure of medieval lime mortars from the west of Scotland: Implications for the formulation of repair and replacement mortars. Materials and Structures 33(9):594600.CrossRefGoogle Scholar
Hughes, JJ, Leslie, AB, Callebaut, K. 2001. The petrography of lime inclusions in historic lime-based mortars. Proceedings of the 8th Euroseminar on Microscopy Applied to Building Materials 359–364.Google Scholar
Ishihara, S, Sahoo, P, Deguchi, K, Ohki, S, Tansho, M, Shimizu, T, Labuta, J, Hill, JP, Ariga, K, Watanabe, K. 2013. Dynamic breathing of CO2 by hydrotalcite. Journal of the American Chemical Society 135(48):1804018043.CrossRefGoogle ScholarPubMed
Kang, S, Kang, S. 2022. Characteristics of the traditional Korean lime plaster after an addition of perilla oil. Materials and Technology 56(5):5. https://doi.org/10.17222/mit.2022.528 Google Scholar
Karkanas, P. 2007. Identification of lime plaster in prehistory using petrographic methods: A review and reconsideration of the data on the basis of experimental and case studies. Geoarchaeology: An International Journal 22(7):775796.CrossRefGoogle Scholar
Kingery, DW, Vandiver, PB, Prickett, M. 1988. The beginnings of pyrotechnology, part II: Production and use of lime and gypsum plaster in the Pre-Pottery Neolithic Near East. Journal of Field Archaeology 15(2):219243.CrossRefGoogle Scholar
Koner, S, Chen, J-S, Hsu, B-M, Tan, C-W, Fan, C-W, Chen, T-H, Hussain, B, Nagarajan, V. 2021. Assessment of Carbon Substrate Catabolism Pattern and Functional Metabolic Pathway for Microbiota of Limestone Caves. Microorganisms 9(8):8. https://doi.org/10.3390/microorganisms9081789 CrossRefGoogle ScholarPubMed
Labeyrie, J, Delibrias, G. 1964. Dating of old mortars by the carbon-14 method. Nature 201(4920):742742.CrossRefGoogle Scholar
Lehouck, A, Termote, J. 2016. Het poortgebouw van de abdijhoeve Ten Bogaerde (Koksijde, W.-Vl.). Archaeologia Mediaevalis 39:8689.Google Scholar
Leslie, AB, Hughes, JJ. 2002. Binder microstructure in lime mortars: Implications for the interpretation of analysis results. Quarterly Journal of Engineering Geology and Hydrogeology 35(3):257263.CrossRefGoogle Scholar
Lichtenberger, A, Lindroos, A, Raja, R, Heinemeier, J. 2015. Radiocarbon analysis of mortar from Roman and Byzantine water management installations in the Northwest Quarter of Jerash, Jordan. Journal of Archaeological Science: Reports 2:114127.Google Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Braskén, M, Sveinbjörnsdóttir, Á. 2007. Mortar dating using AMS 14C and sequential dissolution: Examples from medieval, non-hydraulic lime mortars from the Åland Islands, SW Finland. Radiocarbon 49(1):4767.CrossRefGoogle Scholar
Lindroos, A, Ringbom, Å, Heinemeier, J, Hodgins, G, Sonck-Koota, P, Sjöberg, P, Lancaster, L, Kaisti, R, Brock, F, Ranta, H. 2018. Radiocarbon Dating Historical Mortars: Lime Lumps and/or Binder Carbonate? Radiocarbon 60(3):875899.CrossRefGoogle Scholar
Marzaioli, F, Lubritto, C, Nonni, S, Passariello, I, Capano, M, Terrasi, F. 2011. Mortar radiocarbon dating: Preliminary accuracy evaluation of a novel methodology. Analytical Chemistry 83(6):20382045.CrossRefGoogle ScholarPubMed
Michalska, D. 2019. Influence of different pretreatments on mortar dating results. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 456:236246.CrossRefGoogle Scholar
Michalska, D, Czernik, J. 2015. Carbonates in leaching reactions in context of 14C dating. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 361:431439.CrossRefGoogle Scholar
Michalska, D, Czernik, J, Goslar, T. 2017. Methodological aspect of mortars dating (Poznań, Poland, MODIS). Radiocarbon 59(6):18911906.CrossRefGoogle Scholar
Michalska, D, Mrozek-Wysocka, M. 2020. Radiocarbon dating of mortars and charcoals from novae bath complex: Sequential dissolution of historical and experimental mortar samples with pozzolanic admixture. Radiocarbon 62(3):579590.CrossRefGoogle Scholar
Michalska, D, Pawlyta, J. 2019. Modeled and measured carbon isotopic composition and petrographically estimated binder-aggregate ratio—recipe for binding material dating? Radiocarbon 61(3):799815. https://doi.org/10.1017/RDC.2019.29 CrossRefGoogle Scholar
Miriello, D, Bloise, A, Crisci, GM, De Luca, R, De Nigris, B, Martellone, A, Osanna, M, Pace, R, Pecci, A, Ruggieri, N. 2018. Non-destructive multi-analytical approach to study the pigments of wall painting fragments reused in mortars from the archaeological site of Pompeii (Italy). Minerals 8(4):134.CrossRefGoogle Scholar
Murakami, T, Hodgins, G, Simon, AW. 2013. Characterization of lime carbonates in plasters from Teotihuacan, Mexico: preliminary results of cathodoluminescence and carbon isotope analyses. Journal of Archaeological Science 40(2):960970.CrossRefGoogle Scholar
Nawrocka, D, Michniewicz, J, Pawlyta, J, Pazdur, A. 2005. Application of radiocarbon method for dating of lime mortars. Geochronometria: Journal on Methods & Applications of Absolute Chronology 24.Google Scholar
Nonni, S, Marzaioli, F, Mignardi, S, Passariello, I, Capano, M, Terrasi, F. 2018. Radiocarbon dating of mortars with a Pozzolana aggregate using the Cryo2SoniC protocol to isolate the binder. Radiocarbon 60(2):617637.CrossRefGoogle Scholar
Nonni, S, Marzaioli, F, Secco, M, Passariello, I, Capano, M, Lubritto, C, Mignardi, S, Tonghini, C, Terrasi, F. 2013. 14C mortar dating: the case of the Medieval Shayzar Citadel, Syria. Radiocarbon 55(2):514525.CrossRefGoogle Scholar
Ortega, LA, Zuluaga, MC, Alonso-Olazabal, A, Insausti, M, Murelaga, X, Ibañez, A. 2012. Improved sample preparation methodology on lime mortar for reliable 14C dating. Radiometric Dating, 3–20.Google Scholar
Ortega, LA, Zuluaga, MC, Alonso-Olazabal, A, Murelaga, X, Insausti, M, Ibañez-Etxeberria, A. 2012. Historic lime-mortar 14C dating of Santa María la Real (Zarautz, northern Spain): Extraction of suitable grain size for reliable 14C dating. Radiocarbon 54(1):2336.CrossRefGoogle Scholar
Pagel, M, Barbin, V, Blanc, P, Ohnenstetter, D. 2000. Cathodoluminescence in geosciences: an introduction. In: Cathodoluminescence in geosciences. Springer. p. 121.CrossRefGoogle Scholar
Pecchioni, E, Fratini, F, Cantisani, E. 2014. Atlas of the ancient mortars in thin section under optical microscope. Firenze: Nardini Editore. p. 78.Google Scholar
Pesce, G, Quarta, G, Calcagnile, L, D’Elia, M, Cavaciocchi, P, Lastrico, C, Guastella, R. 2009. Radiocarbon dating of lumps from aerial lime mortars and plasters: Methodological issues and results from San Nicolò of Capodimonte Church (Camogli, Genoa, Italy). Radiocarbon 51(2):867872.CrossRefGoogle Scholar
Pesce, GL, Ball, RJ, Quarta, G, Calcagnile, L. 2012. Identification, extraction, and preparation of reliable lime samples for 14C dating of plasters and mortars with the “pure lime lumps” technique. Radiocarbon 54(3–4):933942.CrossRefGoogle Scholar
Ponce-Antón, G, Lindroos, A, Ringbom, Å, Ortega, LA, Zuluaga, MC, Hajdas, I, Olsen, J, Mauleon, JA. 2020. Comparison of sample preparation procedures for mortar radiocarbon dating. Case study of Irulegi Castle (Navarre, Spain). Quaternary Geochronology 60 101110.CrossRefGoogle Scholar
Prevosti, M, Lindroos, A, Heinemeier, J, Coll, R. 2016. AMS 14C dating at Can Ferrerons, a Roman octagonal building in Premià de Mar, Barcelona. Journal of Archaeological Science: Reports 6:275283.Google Scholar
Reimer, PJ, Austin, WE, Bard, E, Bayliss, A, Blackwell, PG, Ramsey, CB, Butzin, M, Cheng, H, Edwards, RL, Friedrich, M. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4):725757.CrossRefGoogle Scholar
Ringbom, Å. 2011. Chapter 3 The Åland Churches Project and the necessity of interdisciplinary research. In: The voice of the Åland Churches, new light on medieval art, architecture and history. Åland’s Museum.Google Scholar
Ringbom, Å, Lindroos, A, Heinemeier, J, Sonck-Koota, P. 2014. 19 years of mortar dating: learning from experience. Radiocarbon 56(2):619635.CrossRefGoogle Scholar
Ronen, A, Bentur, A, Soroka, I. 1991. A plastered floor from the Neolithic village, Yiftahel (Israel). Paléorient:149–155.Google Scholar
Secco, M, Dilaria, S, Bonetto, J, Addis, A, Tamburini, S, Preto, N, Ricci, G, Artioli, G. 2020. Technological transfers in the Mediterranean on the verge of Romanization: Insights from the waterproofing renders of Nora (Sardinia, Italy). Journal of Cultural Heritage 44:6382.CrossRefGoogle Scholar
Seymour, LM, Maragh, J, Sabatini, P, Di Tommaso, M, Weaver, JC, Masic, A. 2023. Hot mixing: Mechanistic insights into the durability of ancient Roman concrete. Science Advances 9(1):eadd1602. https://doi.org/10.1126/sciadv.add1602 CrossRefGoogle ScholarPubMed
Shi, C, Day, RL. 1993. Chemical activation of blended cements made with lime and natural pozzolans. Cement and Concrete Research 23(6):13891396.CrossRefGoogle Scholar
Sironić, A, Cherkinsky, A, Borković, D, Damiani, S, Barešić, J, Visković, E, Bronić, IK. 2023. A new approach on data extrapolation for mortar dating in the Zagreb Radiocarbon Laboratory. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 537:119124.CrossRefGoogle Scholar
Sonninen, E, Jungner, H. 2001. An improvement in preparation of mortar for radiocarbon dating. Radiocarbon 43(2A):271273.CrossRefGoogle Scholar
Synal, H-A, Stocker, M, Suter, M. 2007. MICADAS: A new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 259(1):713. https://doi.org/10.1016/j.nimb.2007.01.138 CrossRefGoogle Scholar
Toffolo, MB. 2020. Radiocarbon dating of anthropogenic carbonates: What is the benchmark for sample selection? Heritage 3(4):14161432.CrossRefGoogle Scholar
Toffolo, MB. 2021. The significance of aragonite in the interpretation of the microscopic archaeological record. Geoarchaeology 36(1):149169. https://doi.org/10.1002/gea.21816 CrossRefGoogle Scholar
Toffolo, MB, Regev, L, Mintz, E, Kaplan-Ashiri, I, Berna, F, Dubernet, S, Xin, Y, Regev, J, Boaretto, E. 2020. Structural characterization and thermal decomposition of lime binders allow accurate radiocarbon age determinations of aerial lime plaster. Radiocarbon 62(3):633655.CrossRefGoogle Scholar
Toffolo, MB, Ricci, G, Caneve, L, Kaplan-Ashiri, I. 2019. Luminescence reveals variations in local structural order of calcium carbonate polymorphs formed by different mechanisms. Scientific Reports 9(1):115.CrossRefGoogle ScholarPubMed
Toffolo, MB, Ricci, G, Chapoulie, R, Caneve, L, Kaplan-Ashiri, I. 2020. Cathodoluminescence and laser-induced fluorescence of calcium carbonate: a review of screening methods for radiocarbon dating of ancient lime mortars. Radiocarbon 62(3):545564.CrossRefGoogle Scholar
Tucker, ME. 1981. Sedimentary petrology: an introduction. Blackwell Scientific Publications.Google Scholar
Urbanová, P, Boaretto, E, Artioli, G. 2020. The state-of-the-art of dating techniques applied to ancient mortars and binders: a review. Radiocarbon 62(3):503525.CrossRefGoogle Scholar
Van Balen, K. 2005. Carbonation reaction of lime, kinetics at ambient temperature. Cement and Concrete Research 35(4):647657. https://doi.org/10.1016/j.cemconres.2004.06.020 CrossRefGoogle Scholar
Van Strydonck, M, Hayen, R, Boudin, M, van den Brande, T, Burguera, MS, Ramis, D, Borms, H, De Mulder, G. 2015. 14C dating of the lime burial of Cova de Na Dent (Mallorca, Spain): optimization of the sample preparation and limitations of the method. Radiocarbon 57(1):161171.CrossRefGoogle Scholar
Van Strydonck, M, Van der Borg, K. 1990. The construction of a preparation line for AMS-targets at the royal Institute for Cultural Heritage, Brussels. Bulletin Koninklijk Instituut Voor Kunstpatrimonium 23:228234.Google Scholar
Van Strydonck, MJ, Van Der Borg, K, De Jong, AF, Keppens, E. 1992. Radiocarbon dating of lime fractions and organic material from buildings. Radiocarbon 34(3):873879.CrossRefGoogle Scholar
Weber, J, Köberle, T, Pintér, F. 2013. Methods of microscopy to identify and characterise hydraulic binders in historic mortars—a methodological approach. In: Historic mortars. Springer. p. 2131.Google Scholar
Wojcieszak, M, Brande, TV den, Ligovich, G, Boudin, M. 2020. Pretreatment protocols performed at the Royal Institute for Cultural Heritage (RICH) prior to AMS 14C measurements. Radiocarbon. https://doi.org/10.1017/RDC.2020.64 CrossRefGoogle Scholar
Zhang, T, Cheeseman, CR, Vandeperre, LJ. 2011. Development of low pH cement systems forming magnesium silicate hydrate (MSH). Cement and Concrete Research 41(4):439442.CrossRefGoogle Scholar
Supplementary material: File

Wojcieszak et al. supplementary material

Wojcieszak et al. supplementary material
Download Wojcieszak et al. supplementary material(File)
File 927.2 KB