Skip to main content
Log in

Reproducibility and Compressive Strength Enhancement of Printed Silk Fibroin–Polyethylene Glycidyl Methacrylate Composite Hydrogels Via Cellulose Nanofibers

  • Published:
Strength of Materials Aims and scope

Silk fibroin (SF) is a natural polymer with excellent biocompatibility and mechanical properties and moderate human body degradability, making SF an interesting candidate for regenerative medicine. Composite materials of SF and polyethylene glycidyl methacrylate (PEGDMA), a biocompatible polymer, attract attention as scaffold materials for regenerative medicine. To the authors’ knowledge, SF–PEGDMA composite hydrogels have thus far not been manufactured using optical fabrication methods, and the change in their compressive properties during their degradation has not been studied. In addition, cellulose nanofiber (CNF), a plant-derived nanomaterial with excellent mechanical properties and biocompatibility, was added to the SF–PEGDMA hydrogels to enhance their mechanical properties. SF–PEGDMA composite hydrogels were three-dimensionally printed using digital light processing. The compressive strength of the obtained hydrogels stored in pure water or phosphate buffer solution temporarily increased and decreased after 4 days. However, after 7 days, the strength decreased to a level similar to that of the specimens which did not contain CNF. In the formability tests, the reproducibility of the model changed with the intensity of the light and the CNF concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Y. Lee and D. J. Mooney, “Hydrogels for tissue engineering,” Chem Rev, 101, No. 7, 1869–1880 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. J. P. Vacanti and R. Langer, “Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation,” The Lancet, 354, 32–34 (1999).

    Article  Google Scholar 

  3. Y. Ikada, “Challenges in tissue engineering,” J Royal Soc Interface, 3, No. 10, 589–601 (2006).

    Article  CAS  Google Scholar 

  4. B. P. Chan and K. W. Leong, “Scaffolding in tissue engineering: general approaches and tissue-specific considerations,” Eur Spine J, 17, 467–479 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. F. Han, C. Zhu, Q. Guo, et al., “Cellular modulation by the elasticity of biomaterials,” J Mater Chem B, 4, 9–26 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. W. Sun, D. A. Gregory, M. A. Tomeh, and X. Zhao, “Silk fibroin as a functional biomaterial for tissue engineering,” Int J Mol Sci, 22, No. 3, 1499 (2021).

    Google Scholar 

  7. C. M. Vaz, S. van Tuijl, C. V. C. Bouten, and F. P. T. Baaijens, “Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique,” Acta Biomater, 1, 575–582 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. H. Lin, D. Zhang, P. G. Alexander, et al., “Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture,” Biomaterials, 34, 331–339 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. B. Kundu, R. Rajkhowa, S. C. Kundu, and X. Wang, “Silk fibroin biomaterials for tissue regenerations,” Adv Drug Delivery Rev, 65, 457–470 (2013).

    Article  CAS  Google Scholar 

  10. S. Yodmuang, S. L. McNamara, A. B. Nover, et al., “Silk microfiber reinforced silk hydrogel composites for functional cartilage tissue repair,” Acta Biomater, 11, 27–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. S. H. Kim, Y. K. Yeon, J. M. Lee, et al, “Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing,” Nat Commun, 9, 1620 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. J. Liu, Q. Fang, D. H. Lin, et al., “Alginate-poloxamer/silk fibroin hydrogels with covalently and physically cross-linked networks for cartilage tissue engineering,” Carbohyd Polym, 247, 116593 (2020).

    Article  CAS  Google Scholar 

  13. L. Li, S. Qin, J. Peng, et al., “Engineering gelatin-based alginate/carbon nanotubes blend bioink for direct 3D printing of vessel constructs,” Int J Biol Macromol, 145, 262–271 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. C. Wu, S. Egawa, T. Kanno, et al., “Nanocellulose reinforced silkworm silk fibers for application to biodegradable polymers,” Mater Design, 202, 109537 (2021).

    Article  CAS  Google Scholar 

  15. J. Melke, S. Midha, S. Ghosh, et al., “Silk fibroin as biomaterial for bone tissue engineering,” Acta Biomater, 31, 1–16 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. X. Wang, J. A. Kluge, G. G. Leisk, and D. L. Kaplan, “Sonication-induced gelation of silk fibroin for cell encapsulation,” Biomaterials, 29, 1054–1064 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. T. Yucel, P. Cebe, and D. L. Kaplan, “Vortex-induced injectable silk fibroin hydrogels,” Biophys J, 97, 2044–2050 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. S. Kapoor and S. C. Kundu, “Silk protein-based hydrogels: promising advanced materials for biomedical applications,” Acta Biomater, 31, 17–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. M. Fathi‐Achachelouei, D. Keskin, E. Bat, et al., “Dual growth factor delivery using PLGA nanoparticles in silk fibroin/PEGDMA hydrogels for articular cartilage tissue engineering,” J Biomed Mater Res B, 108, 2041–2062 (2020).

    Article  CAS  Google Scholar 

  20. E. A. Ahmed, F. S. Aggor, A. M. Awad, and A. T. El-Aref, “An innovative method for preparation of nanometal hydroxide superabsorbent hydrogel,” Carbohyd Polym, 91, 693–698 (2013).

    Article  CAS  Google Scholar 

  21. K. Deligkaris, T. S. Tadele, W. Olthuis, and A. van der Berg, “Hydrogel-based devices for biomedical applications,” Sensor Actuat B-Chem, 147, 765–774 (2010).

    Article  CAS  Google Scholar 

  22. K. T. Nguyen and J. L. West, “Photopolymerizable hydrogels for tissue engineering applications,” Biomaterials, 23, 4307–4314 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. J. Li and D. J. Mooney, “Designing hydrogels for controlled drug delivery,” Nat Rev Mater, 1, 16071 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. S. Lin-Gibson, S. Bencherif, J. A. Cooper, et al., “Synthesis, and characterization of PEG dimethacrylates and their hydrogels,” Biomacromolecules, 5, 1280–1287 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. C. C. Lin and K. S. Anseth, “PEG hydrogels for the controlled release of biomolecules in regenerative medicine,” Pharm Res, 26, 631–643 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. S. Egawa, H. Kurita, T. Kanno, and F. Narita, “Effect of silk fibroin concentration on the properties of polyethylene glycol dimethacrylates for digital light processing printing,” Adv Eng Mater, 23, 2100487 (2021).

    Article  CAS  Google Scholar 

  27. N. Mahfoudhi and S. Boufi, “Poly (acrylic acid-co-acrylamide)/cellulose nanofibrils nanocomposite hydrogels: effects of CNFs content on the hydrogel properties,” Cellulose, 23, 3691–3701 (2016).

    Article  CAS  Google Scholar 

  28. W. Deng, Y. Tang, J. Mao, et al., “Cellulose nanofibril as a crosslinker to reinforce the sodium alginate/chitosan hydrogels,” Int J Biol Macromol, 189, 890–899 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. S. J. Eichhorn, A. Dufresne, M. Aranguren, et al., “Review: current international research into cellulose nanofibres and nanocomposites,” J Mater Sci, 45, 1–33 (2010).

    Article  ADS  CAS  Google Scholar 

  30. O. Nechyporchuk, M. C. Belgacem, and J. Bras, “Production of cellulose nanofibrils: a review of recent advances,” Ind Crops Prod, 93, 2–25 (2016).

    Article  CAS  Google Scholar 

  31. Y. Xie, H. Kurita, R. Ishigami, and F. Narita, “Assessing the flexural properties of epoxy composites with extremely low addition of cellulose nanofiber content,” Appl Sci, 10, 1159 (2020).

    Article  CAS  Google Scholar 

  32. F. Narita, Y. Wang, H. Kurita, and M. Suzuki, “Multi-scale analysis and testing of tensile behavior in polymers with randomly oriented and agglomerated cellulose nanofibers,” Nanomaterials, 10, 700 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. H. Kurita, R. Ishigami, C. Wu, and F. Narita, “Mechanical properties of mechanically-defibrated cellulose nanofiber reinforced epoxy resin matrix composites,” J Compos Mater, 55, 455–464 (2021).

    Article  CAS  Google Scholar 

  34. H. Kurita, R. Ishigami, C. Wu, and F. Narita, “Experimental evaluation of tensile properties of epoxy composites with added cellulose nanofiber slurry,” Strength Mater, 52, No. 5, 798–804 (2020). https://doi.org/https://doi.org/10.1007/s11223-020-00233-3

    Article  CAS  Google Scholar 

  35. T. Keino, L. Rova, A. Gallet-Pandellé, et al., “Negative magnetostrictive paper formed by dispersing CoFe2O4 particles in cellulose nanofibrils,” Sci Rep, 13, 6144 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. L. Huang, X. Du, S. Fan, et al., “Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores,” Carbohyd Polym, 221, 146–156 (2019).

    Article  CAS  Google Scholar 

  37. K. C. Cheng, C. F. Huang, Y. Wei, and S. Hsu, “Novel chitosan–cellulose nanofiber self-healing hydrogels to correlate self-healing properties of hydrogels with neural regeneration effects,” NPG Asia Mater, 11, 25 (2019).

    Article  ADS  CAS  Google Scholar 

  38. H. Ding, M. Dong, Q. Zheng, and Z. L. Wu, “Digital light processing 3D printing of hydrogels: a minireview,” Mol Syst Des Eng, 9, 1017–1029 (2022).

    Article  Google Scholar 

  39. M. Caprioli, I. Roppolo, A. Chiappone, et al., “3D-printed self-healing hydrogels via digital light processing,” Nat Commun, 12, 2462 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kurita.

Additional information

Translated from Problemy Mitsnosti, No. 6, p. 121, November – December, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rova, L., Saito, M., Kurita, H. et al. Reproducibility and Compressive Strength Enhancement of Printed Silk Fibroin–Polyethylene Glycidyl Methacrylate Composite Hydrogels Via Cellulose Nanofibers. Strength Mater (2024). https://doi.org/10.1007/s11223-024-00610-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s11223-024-00610-2

Keywords

Navigation